Skip to main content
Log in

Analysis of a Full-Scale Bi–Sn Liquid Metal Model for the Continuous Casting of Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The complex multiphase flow behavior during the continuous casting of steel was investigated through a physically modeled full-scale liquid metal system. This system was operated using a stopper control system (2.5 ton Bi–Sn system). The obtained data, including nozzle pressures, were processed using a concise analytical model. Compared to water modeling, the use of a low-melting-point alloy (58% Bi and 42% Sn eutectic) allows for a full-scale system with material properties closer to those of steel (e.g., interfacial tension). An industrial-scale stainless-steel stopper and a submerged entry nozzle (SEN) were mounted on the system to prevent air permeation due to the negative pressure in the nozzle. Argon gas was injected into an industrial stopper–rod system through an argon line embedded in the stopper. The analytical model characterizes the pressure loss, flow separation, and cavitation of the stopper control system by considering the effects of argon in the nozzle. This study proposes the mapping of the pressure loss, throughput, flow separation, and cavitation based on the gas fraction and stopper position.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(P\) :

Flow pressure

\(\rho\) :

Flow density

\(g\) :

Gravity acceleration

\(h\) :

Height

\(V\) :

Flow velocity

\({P}_{L}\) :

Pressure loss

\(K\) :

Pressure loss constant

\(\alpha\) :

Gas volume fraction

\({d}_{gap}\) :

Minimum opening distance at stopper-nozzle gap

\({P}_{argon}\) :

Argon line back pressure

\(f\) :

Friction factor

\(Q\) :

Volumetric flow rate

\(A\) :

Cross section area

\({h}_{2}\) :

Height difference between tundish bottom and metal level

\({h}_{tun}\) :

Tundish level

\({h}_{tip}\) :

Distance from tundish bottom to stopper tip

\(L\) :

Length

\(D\) :

Diameter

\({h}_{sub}\) :

Submergence depth

\({h}_{stopper}\) :

Stopper position

\({P}_{nose}\) :

Pressure measured at stopper nose

\(mix\) :

Gas–liquid mixture phase

x 1 :

Starting point of a streamline

x 2 :

End point of a streamline

SEN :

Submerged entry nozzle

metal :

Liquid metal phase

argon :

Argon gas phase

gap :

Stopper-nozzle gap (opening area)

tun :

Tundish

sum :

Sum of pressure losses by stopper and argon effects

elbow :

Loss by change in the flow direction by port outlet

friction :

Friction loss

clog :

Loss by clogging

tip :

Stopper tip

stopper :

Stopper

argon_h :

Thermally expanded argon gas

vapor:

Vapor pressure of liquid metal

References

  1. R.M.C. De Keyser, Control. Eng. Pract. 5, 231–237 (1997)

    Article  Google Scholar 

  2. H. Jeong, J.-Y. Hwang, J.-W. Cho, Met. Mater. Int. 22, 295–304 (2016)

    Article  CAS  Google Scholar 

  3. M. Jeong, C. Choi, M.Y. Ha, S.J. Kim, J.K. Park, K.S. Oh, Met. Mater. Int. 21, 303–310 (2015)

    Article  CAS  Google Scholar 

  4. H. Yang, S.P. Vanka, B.G. Thomas, ISIJ Int. 59, 956–972 (2019)

    Article  CAS  Google Scholar 

  5. S. Yokoya, S. Takagi, H. Souma, M. Iguchi, Y. Asako, S. Hara, ISIJ Int. 38, 1346–1352 (1998)

    Article  CAS  Google Scholar 

  6. H. Bai, B.G. Thomas, Metall. Mater. Trans. B 32, 707–722 (2001)

    Article  Google Scholar 

  7. J. Savolainen, A. Rousu, T. Fabritius, O. Mattila, P. Sulasalmi, Steel Res. Int. 81, 980–986 (2010)

    Article  CAS  Google Scholar 

  8. H. Yang, H. Olia, B.G. Thomas, Metals 11, 116 (2021)

    Article  CAS  Google Scholar 

  9. M. Suzuki, Y. Yamaoka, N. Kubo, M. Suzuki, ISIJ Int. 42, 248–256 (2002)

    Article  CAS  Google Scholar 

  10. H. Yang, S.P. Vanka, B.G. Thomas, JOM 70, 2148–2156 (2018)

    Article  CAS  Google Scholar 

  11. M. Javurek, M. Thumfart, R. Wincor, Steel Res. Int. 81, 668–674 (2010)

    Article  CAS  Google Scholar 

  12. B.F. Armaly, F. Durst, J.C.F. Pereira, B. Schönung, J. Fluid Mech. 127, 473–496 (1983)

    Article  Google Scholar 

  13. R.C. Lima, C.R. Andrade, E.L. Zaparoli, Int. Commun. Heat and Mass Transfer 35, 1053–1060 (2008)

    Article  Google Scholar 

  14. F. Durst, C. Tropea, Structure of Complex Turbulent Shear Flow, ed. by R. Dumas, L. Fulachier (Springer, Berlin, 1983), pp.41–52

    Book  Google Scholar 

  15. T. Kato, M. Hara, A. Muto, S. Hiraki, M. Kawamoto, ISIJ Int. 47, 840–846 (2007)

    Article  CAS  Google Scholar 

  16. R.B. Fdhila, Analyse expérimentale et modélisation d’un écoulement vertical à bulles dans un élargissement brusque, Ph.D. Thesis, National Polytechnic Institute of Toulouse (1991)

  17. F. Aloui, L. Doubliez, J. Legrand, M. Souhar, Exp. Therm. Fluid. Sci. 19, 118–130 (1999)

    Article  Google Scholar 

  18. H. Bai, B.G. Thomas, Metall. Mater. Trans. B 32, 1143–1159 (2001)

    Article  Google Scholar 

  19. K. Timmel, N. Shevchenko, M. Röder, M. Anderhuber, P. Gardin, S. Eckert, G. Gerbeth, Metall. Mater. Trans. B 46, 700–710 (2015)

    Article  CAS  Google Scholar 

  20. M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow (Springer, New York, 2010)

    Google Scholar 

  21. K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, T. Wondrak, ISIJ Int. 50, 1134–1141 (2010)

    Article  CAS  Google Scholar 

  22. H. Yang, Modeling of multiphase turbulent flow in continuous casting of steel, Ph.D. Thesis, University of Illinois (2018)

    Google Scholar 

  23. H. Yang, S.P. Vanka, B.G. Thomas, J. Fluids Eng. 140, 101202 (2018)

    Google Scholar 

  24. N. Kasai, M. Iguchi, Tetsu-To-Hagane 91, 847–855 (2005)

    Article  CAS  Google Scholar 

  25. M. Iguchi, J. Yoshida, T. Shimizu, Y. Mizuno, ISIJ Int. 40, 685–691 (2000)

    Article  CAS  Google Scholar 

  26. N. Bessho, R. Yoda, H. Yamasaki, T. Fujii, T. Nozaki, S. Takatori, ISIJ Int. 31, 40–45 (1991)

    Article  Google Scholar 

  27. K. Ishiguro, M. Iguchi, ISIJ Int. 43, 663–670 (2003)

    Article  CAS  Google Scholar 

  28. S.R. Higson, P. Drake, M. Lewus, T. Lamp, H. Kochner, P. Valentin, C. Brush, J. Ciriza, J.J. Lauraudogoitia, J. Bjorkvall, L. Bergman, Flowvis: Measurement, Prediction and Control of Steel Flows in the Casting Nozzle and Mould (European Commission, Brussels, 2010)

  29. R. Liu, B.G. Thomas, J. SenGupta, S.D. Chung, M. Trinh, ISIJ Int. 54, 2314–2323 (2014)

    Article  CAS  Google Scholar 

  30. M. Iguchi, Y. Terauchi, Int. J. Multiphas. Flow 27, 729–735 (2001)

    Article  CAS  Google Scholar 

  31. B.G. Thomas, X. Huang, R.C. Sussman, Metall. Mater. Trans. B 25, 527–547 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an INHA UNIVERSITY Research Grant. This work was supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea Government(MOTIE).(RS-2023-00243974, Graduate School of Digital-based Sustainable Energy Process Innovation Convergence).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjin Yang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Eck, J. & Lopez, P.E.R. Analysis of a Full-Scale Bi–Sn Liquid Metal Model for the Continuous Casting of Steel. Met. Mater. Int. 30, 1370–1386 (2024). https://doi.org/10.1007/s12540-023-01577-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01577-6

Keywords

Navigation