Skip to main content
Log in

Investigation of the Viscosity and Structural Properties of CaO-SiO2-TiO2 Slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The viscosity of CaO-SiO2-TiO2 slags was measured via the rotating cylinder method to reveal the effect of TiO2 on viscous flow of the slags. Furthermore, the structure of the ternary slags and the role of Ti4+ were investigated by Fourier transform infrared and Raman spectroscopy techniques. The results are beneficial for a better understanding of the behaviors of Ti-bearing silicate slags. The TiO2 additions lowered the viscosity and apparent activation energy of the slags. However, the degree of polymerization (DOP) of silicate network was found to be enhanced with increasing the TiO2 content, which is suggested by the increase in mole fraction of Q 3 ([SiO4]-tetrahedra with three bridging oxygens) and the decrease in Q 0. The Eq. [2] Q 2 ↔ Q 1 + Q 3 was appropriate to express the relationship of different Q n species. The introduction of Ti4+ into the silicate network as network formers increased the DOP but weakened the strength of slag structure at the same time. Besides, a large proportion of Ti4+ exists in the slag in the form of \( TiO_{4}^{4 - } \) monomers, resulting in a decrease of viscosity with increasing TiO2 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.I. Zaitsev, A.V. Leites, A.D. Litvina, and B.M. Mogutnov: Steel Res., 1994, vol. 65, pp. 368–74.

    Google Scholar 

  2. G. Wen, S. Seetharaman, P. Tang, X. Qi, and Y. Liu: ISIJ Int., 2007, vol. 47, pp. 1117–25.

    Article  Google Scholar 

  3. Z. Wang, Q. Shu, and K. Chou: Steel Res. Int., 2013, vol. 84, pp. 766–76.

    Article  Google Scholar 

  4. X. Qi, G. Wen, and P. Tang: J. Non-Cryst. Solids, 2008, vol. 354, pp. 5444–52.

    Article  Google Scholar 

  5. H. Nakada and K. Nagata: ISIJ Int., 2006, vol. 46, pp. 441–49.

    Article  Google Scholar 

  6. J. Li, Z.T. Zhang, and X.D. Wang: Ironmaking Steelmaking, 2012, vol. 39, pp. 414–18.

    Article  Google Scholar 

  7. J. Li, X.D. Wang, and Z.T. Zhang: ISIJ Int., 2011, vol. 51, pp. 1396–402.

    Article  Google Scholar 

  8. L. Zhang, M.Y. Wang, and Z.T. Sui: ISIJ Int., 2006, vol. 46, pp. 458–65.

    Article  Google Scholar 

  9. Y. Morizane and R.J. Fruehan: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 29–43.

    Article  Google Scholar 

  10. J.L. Liao, J. Li, X.D. Wang, and Z.T. Zhang: Ironmaking Steelmaking, 2012, vol. 39, pp. 133–39.

    Article  Google Scholar 

  11. A. Shankar, M. Görnerup, A.K. Lahiri, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 911–15.

    Article  Google Scholar 

  12. H. Park, J.-Y. Park, G.H. Kim, and I. Sohn: Steel Res. Int., 2012, vol. 83, pp. 150–56.

    Article  Google Scholar 

  13. S. Ren, J. Zhang, L. Wu, W. Liu, Y. Bai, X. Xing, B. Su, and D. Kong: ISIJ Int., 2012, vol. 52, pp. 984–91.

    Article  Google Scholar 

  14. S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lörz, and R. Carli: Ironmaking Steelmaking, 2000, vol. 27, pp. 238–42.

    Article  Google Scholar 

  15. R.C. DeVries, R. Roy, and E.F. Osborn: J. Am. Ceram. Soc., 1955, vol. 38, pp. 158–71.

    Article  Google Scholar 

  16. D.B. Dingwell: Am. Mineral., 1992, vol. 77, pp. 270–74.

    Google Scholar 

  17. A. Ohno and H.U. Ross: Can. Metall. Q., 1963, vol. 2, pp. 327–33.

    Google Scholar 

  18. M.G. Frohberg and R. Weber: Arch. Eisenhuttenwes, 1965, vol. 36, pp. 477–80.

    Google Scholar 

  19. H. Schenck and M.G. Frohberg: Arch. Eisenhuttenwes, 1962, vol. 33, pp. 421–25.

    Google Scholar 

  20. L. Zhang and S. Jahanshahi: The Seventh International Conference on Molten Slags, Fluxes and Salts, 2004, pp. 51–6.

  21. J.O’M. Bockris and D.C. Lowe: Proc. Roy. Soc., 1954, vol. 226, pp. 423–35.

  22. G. Urbain, Y. Bottinga, and P. Richet: Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1061–72.

    Article  Google Scholar 

  23. N. Saito, N. Hori, K. Nakashima, and K. Mori: Metall. Mater. Trans. B, 2003, vol. 34, pp. 509–16.

    Article  Google Scholar 

  24. I. Sohn, W. Wang, H. Matsuura, F. Tsukihashi, and D.J. Min: ISIJ Int., 2012, vol. 52, pp. 158–60.

    Article  Google Scholar 

  25. B.O. Mysen and D.B. Neuville: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 325–42.

    Article  Google Scholar 

  26. M. Guignard, L. Cormier, V. Montouillout, N. Menguy, D. Massiot, and A.C. Hannon: J. Phys., 2009, vol. 21, p. 375107.

    Google Scholar 

  27. M. Roskosz, M.J. Toplis, and P. Richet: Geochim. Cosmochim. Acta, 2004, vol. 68, pp. 591–606.

    Article  Google Scholar 

  28. S. Sakka, F. Miyaji, and K. Fukumi: J. Non-Cryst. Solids, 1989, vol. 112, pp. 64–8.

    Article  Google Scholar 

  29. F.A. Seifert, B.O. Mysen, and D. Virgo: Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 1879–84.

    Article  Google Scholar 

  30. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2004, vol. 35, pp. 269–75.

    Article  Google Scholar 

  31. J.H. Park, D.J. Min, and H.S. Song: ISIJ Int., 2002, vol. 42, pp. 344–51.

    Article  Google Scholar 

  32. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 645–59.

    Google Scholar 

  33. D. Virgo, B.O. Mysen, and I. Kushiro: Science, 1980, vol. 208, pp. 1371–73.

    Article  Google Scholar 

  34. P. McMillan: Am. Mineral., 1984, vol. 69, pp. 622–44.

    Google Scholar 

  35. B.O. Mysen, D. Virgo, and C.M. Scarfe: Am. Mineral., 1980, vol. 65, pp. 690–710.

    Google Scholar 

  36. J.D. Frantz and B.O. Mysen: Chem. Geol., 1995, vol. 121, pp. 155–76.

    Article  Google Scholar 

  37. Z. Wang, Q. Shu, and K. Chou: ISIJ Int., 2011, vol. 51, pp. 1021–27.

    Article  Google Scholar 

  38. B.O. Mysen and J.D. Frantz: Contrib. Mineral. Petrol., 1994, vol. 117, pp. 1–14.

    Article  Google Scholar 

  39. D.R. Neuville, L. Cormier, V. Montouillout, P. Florian, F. Millot, J.-C. Rifflet, and D. Massiot: Am. Mineral., 2008, vol. 93, pp. 1721–31.

    Article  Google Scholar 

  40. B.O. Mysen, F.J. Ryerson, and D. Virgo: Am. Mineral., 1980, vol. 65, pp. 1150–65.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the National Natural Science Foundation of China (51172003 and 51074009). Support from the National High Technology Research and Development Program of China (863 Program, 2012AA06A114) and the China National Key Technology R&D Program (2011BAB03B02 and 2011BAB02B05) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuotai Zhang.

Additional information

Manuscript submitted October 28, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, K., Zhang, Z., Liu, L. et al. Investigation of the Viscosity and Structural Properties of CaO-SiO2-TiO2 Slags. Metall Mater Trans B 45, 1389–1397 (2014). https://doi.org/10.1007/s11663-014-0053-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0053-8

Keywords

Navigation