Skip to main content
Log in

Thermodynamics of TiO x in blast furnace-type slags

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Equilibrium studies between CaO-SiO2-10 pct MgO-Al2O3-TiO1.5-TiO2 slags, carbon-saturated iron, and a carbon monoxide atmosphere were performed at 1773 K to determine the activities of TiO1.5 and TiO2 in the slag. These thermodynamic parameters are required to predict the formation of titanium carbonitride in the blast furnace. In order to calculate the activity of titanium oxide, the activity coefficient of titanium in carbon-saturated iron-carbon-titanium alloys was determined by measuring the solubility of titanium in carbon-saturated iron in equilibrium with titanium carbide. The solubility and the activity coefficient of titanium obtained were 1.3 pct and 0.023 relative to 1 wt pct titanium in liquid iron or 0.0013 relative to pure solid titanium at 1773 K, respectively. Over the concentration range studied, the effect of the TiO x content on its activity coefficient is small. In the slag system studied containing 35 to 50 pct CaO, 25 to 45 pct SiO2, 7 to 22 pct Al2O3, and 10 pct MgO, the activity coefficients of TiO1.5 and TiO2 relative to pure solid standard states range from 2.3 to 8.8 and from 0.1 to 0.3, respectively. Using thermodynamic data obtained, the prediction of the formation of titanium carbonitride was made. Assuming hypothetical ‘TiO2,’ i.e., total titanium in the slag expressed as TiO2, and using the values of the activity coefficients of TiO1.5 and TiO2 determined, the equilibrium distribution of titanium between blast furnace-type slags and carbon-saturated iron was computed. The value of [pct Ti]/(pct ‘TiO2’) ranges from 0.1 to 0.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Narita, M. Maekawa, T. Onoye, Y. Satoh, and M. Miyamoto: Trans. Iron Steel Inst. Jpn., 1977, vol. 17, pp. 459–68.

    CAS  Google Scholar 

  2. R. Yamamoto, R. Nakajima, Y. Koyama, and K. Niiya: Ironmaking Conf. Proc., ISS-AIME, Detroit, MI, 1985, vol. 44, pp. 149–63.

    Google Scholar 

  3. M. Higuchi: Trans. ISS, I&SM, 1978, June, pp. 33–42.

  4. Y. Tomita, O. Terayama, T. Ohishi, T. Funakoshi, Y. Hoshikuma, S. Nunomura, and N. Hirota: Proc. McMaster Symp. on Iron and Steelmaking, 1995, May, No. 23, pp. 32–40.

  5. A. Koike, K. Tanaka, J. Kariya, M. Kojima, and K. Sato: Proc. 2nd Eur. Ironmaking Congr., The Institute of Metals, Glasgow, Sept. 1991, pp. 155–167.

    Google Scholar 

  6. K. Shimomura: Proc. 2nd European Ironmaking Congr., The Institute of Metals, Glasgow, Sept. 1991, pp. 179–87.

    Google Scholar 

  7. K. Datta, P.K. Sen, S.S. Gupta, and A. Chatterjee: Steel Res., 1993, vol. 64 (5), pp. 232–38.

    CAS  Google Scholar 

  8. J.T. Chao: La Rev. Métall.-CIT, 1989, Oct., pp. 765–74.

  9. T. Inatani, F. Aratani, N. Tsuchiya, M. Kondo, and K. Okabe: Stahl Eisen, 1974, vol. 94 (2), pp. 47–53.

    CAS  Google Scholar 

  10. R.C. Devries, R. Roy, and E.F. Osborn: J. Am. Ceram. Soc., 1955, vol. 38, pp. 158–71.

    Article  CAS  Google Scholar 

  11. A. Ohno and H.U. Ross: Can. Metall. Q., 1963, vol. 2 (3), pp. 243–58.

    CAS  Google Scholar 

  12. H.A. Fine and S. Arac: Ironmaking and Steelmaking, 1980, No. 4, pp. 160–66.

  13. M. Kato and S. Minowa: Trans. Iron Steel Inst. Jpn., 1969, vol. 9, pp. 31–38.

    CAS  Google Scholar 

  14. G. Handfield and G.G. Charette: Can. Metall. Q., 1971, vol. 10 (3), pp. 235–43.

    CAS  Google Scholar 

  15. A. Ohno and H.U. Ross: Can. Metall. Q., 1963, vol. 2 (3), pp. 259–79.

    CAS  Google Scholar 

  16. R. Benesch, A. Ledzki, R. Kopec, and R. Stachura: Thermochim. Acta, 1989, vol. 152, pp. 433–46.

    Article  CAS  Google Scholar 

  17. R. Benesch, A. Ledzki, R. Kopec, and R. Stachura: Thermochim Acta, 1989, vol. 152, pp. 447–61.

    Article  CAS  Google Scholar 

  18. M. Kishi, R. Inoue, and H. Suito: Iron Steel Inst. Jpn. Int., 1994, vol. 34 (11), pp. 859–67.

    CAS  Google Scholar 

  19. K. Ito and N. Sano: Tetsu-to-Hagané, 1981, vol. 67 (14), pp. 2131–37 (in Japanese).

    CAS  Google Scholar 

  20. G. Tranell, O. Ostrovski, and S. Jahanshahi: Proc. 5th Int. Conf. on Molten Slags, Fluxes and Salts; ISS/ISIJ, Sydney, 1997, pp. 501–06.

    Google Scholar 

  21. A.T. Prince: J. Am. Ceram. Soc., 1954, vol. 37 (9), pp. 402–08.

    Article  CAS  Google Scholar 

  22. J. Tanabe and H. Suito: Steel Res., 1992, vol. 63 (12), pp. 515–20.

    CAS  Google Scholar 

  23. J.F. Shackelford, W. Alexander, and J.S. Park: CRC Materials Science and Engineering Handbook, 2nd ed., CRC Press, Inc., Boca Raton, FL, 1994, p. 50.

    Google Scholar 

  24. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications Ltd., Aedermannsdorf, Switzerland, 1992, p. 293.

    Google Scholar 

  25. M. Sumito, N. Tsuchiyama, K. Okabe, and K. Sanbongi: Trans. Iron Steel Inst. Jpn., 1981, vol. 21, pp. 414–21.

    Google Scholar 

  26. F.D. Delve, H.W. Meyer, and H.N. Lander: Physical Chemistry of Process Metallurgy, Part II, Interscience Publisher, New York, NY, 1961, pp. 1111–39.

    Google Scholar 

  27. K. Narita, T. Onoue, Y. Sato, and M. Miyamoto: Tetsu-to-Hagané, 1975, vol. 61, p. s9 (in Japanese).

  28. S. Sugiura, M. Tokuda, M. Otani, and R. Sato: Tetsu-to-Hagané, 1966, vol. 52, p. s10 (in Japanese).

  29. T. Minagawa, M. Tokuda, R. Inoue, and M. Otani: Tetsu-to-Hagané, 1977, vol. 63, p. s572 (in Japanese).

  30. J.F. Elliott, M. Gleiser, and V. Ramakrishna: Thermochemistry for Steelmaking, Addison-Wesley Publishing Co., Inc., Reading, MA, 1963, vol. II, p. 621.

    Google Scholar 

  31. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, NY, 1980, pp. 5–24 and p. 81.

    Google Scholar 

  32. E.T. Turkdogan: Fundamentals of Steelmaking, The Institute of Materials, London, 1996, p. 10.

    Google Scholar 

  33. R.H. Rein and J. Chipman: Trans. TMS-AIME, 1965, vol. 233, pp. 415–25.

    CAS  Google Scholar 

  34. H. Sun, N. Shinozaki, K. Mori, and Y. Kawai: Tetsu-to-Hagané, 1988, vol. 74 (11), pp. 2114–21 (in Japanese).

    CAS  Google Scholar 

  35. E.T. Turkdogan: Physicochemical Properties of Molten Slags and Glasses, Metals Society, London, 1983, pp. 271–324.

    Google Scholar 

  36. H.D. Schreiber, T. Thanyasiri, J.J. Lach, and R.A. Legere: Phys. Chem. Glasses, 1978, vol. 19 (6), pp. 126–39.

    CAS  Google Scholar 

  37. I.D. Sommerville and H.B. Bell: Can. Metall. Q., 1982, vol. 21 (2), pp. 145–55.

    CAS  Google Scholar 

  38. S.D. Brown, R.J. Roxburgh, I. Ghita, and H.B. Bell: Ironmaking and Steelmaking, 1982, vol. 9 (4), pp. 163–67.

    Google Scholar 

  39. D.A.R. Kay and J. Taylor: J. Iron Steel Inst., 1963, vol. 201, pp. 67–70.

    CAS  Google Scholar 

  40. R.J. Fruehan and E.T. Turkdogan: Metall. Trans., 1971, vol. 2, pp. 895–902.

    CAS  Google Scholar 

  41. B. Ozturk and R.J. Fruehan: Metall. Trans. B, 1990, vol. 21B, pp. 879–84.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morizane, Y., Ozturk, B. & Fruehan, R.J. Thermodynamics of TiO x in blast furnace-type slags. Metall Mater Trans B 30, 29–43 (1999). https://doi.org/10.1007/s11663-999-0004-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0004-y

Keywords

Navigation