Skip to main content
Log in

Understanding the Reversed Tension–Compression Asymmetry of an Extruded Mg-10Y Sheet from the Perspective of Slip Activity and Plastic Heterogeneity

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To understand the reversed tension–compression asymmetry (TCA), i.e. compressive yield strength > tensile yield strength, in an extruded Mg-10Y sheet, quasi-in-situ grain-scale slip activity and plastic heterogeneity were studied statistically using slip trace analysis and EBSD. No twins were found in present study, while notable TCA slip behavior was observed and analyzed in detail. The overall slip activity, in terms of the fraction of the grains exhibiting slip traces, for compression (79.5 pct) was higher than that of tension (64.6 pct). Besides, basal < a > and prismatic < a > slips always exhibited higher activity during tension than compression, while the opposite was true for pyramidal slips. Further analysis of the critical resolved shear stress (CRSS) ratio, based on 1185 sets of observed slip traces, revealed that CRSSpyr II/CRSSbas and CRSSpyr I/CRSSbas for tension was ~ 3 times larger than that for compression, while CRSSpri/CRSSbas was symmetric. Statistical investigation on the angle between active pyramidal slip plane normal and loading direction indicated that pyramidal slip was more active when the slip plane was under tension compared to compression, which was consistent with the asymmetric CRSS ratios. More inhomogeneous deformation, in terms of higher intragranular misorientation angle (IGM) and geometrically necessary dislocation (GND) density, was found during compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J. Song, J. She, D. Chen, and F. Pan: J. Magnes. Alloy, 2020, vol. 8, pp. 1–41.

    Article  CAS  Google Scholar 

  2. W.J. Joost and P.E. Krajewski: Scr. Mater., 2017, vol. 128, pp. 107–12.

    Article  CAS  Google Scholar 

  3. W. Yang, G.F. Quan, B. Ji, Y.F. Wan, H. Zhou, J. Zheng, and D.D. Yin: J. Magnes. Alloy, 2022, vol. 10, pp. 195–208.

    Article  CAS  Google Scholar 

  4. T. Wang, M. Zha, C. Du, H. Jia, C. Wang, K. Guan, Y. Gao, and H. Wang: Mater. Res. Lett., 2023, vol. 11, pp. 187–95.

    Article  Google Scholar 

  5. Z. Jiang, D. Yin, Y. Wan, R. Ni, H. Zhou, J. Zheng, and Q. Wang: T. Nonferr. Metal. Soc., 2023, vol. 33, pp. 79–94.

    Article  CAS  Google Scholar 

  6. Z. Zeng, N. Stanford, C.H.J. Davies, J. Nie, and N. Birbilis: Int. Mater. Rev., 2018, vol. 64, pp. 27–62.

    Article  Google Scholar 

  7. U.M. Chaudry, K. Hamad, and J. Kim: J. Alloy Compd., 2019, vol. 792, pp. 652–64.

    Article  CAS  Google Scholar 

  8. Z. Yang, A. Ma, B. Xu, J. Jiang, and J. Sun: J. Alloy Compd., 2021, vol. 868, p. 159238.

    Article  CAS  Google Scholar 

  9. J. Robson: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5226–35.

    Article  Google Scholar 

  10. W. Ren, R. Xin, J. Xu, B. Song, L. Zhang, and Q. Liu: J. Alloy Compd., 2019, vol. 792, pp. 610–16.

    Article  CAS  Google Scholar 

  11. S.H. Park, J.H. Lee, B.G. Moon, and B.S. You: J. Alloy Compd., 2014, vol. 617, pp. 277–80.

    Article  CAS  Google Scholar 

  12. M.R. Barnett, N. Stanford, P. Cizek, A. Beer, Z. Xuebin, and Z. Keshavarz: JOM-US, 2009, vol. 61, pp. 19–24.

    Article  CAS  Google Scholar 

  13. L. Xiao, G. Yang, H. Qin, J. Ma, and W. Jie: Mater. Sci. Eng. A, 2021, vol. 801, p. 140439.

    Article  CAS  Google Scholar 

  14. J.W. Lu, D.D. Yin, L.B. Ren, and G.F. Quan: J. Mater. Sci., 2016, vol. 51, pp. 10464–77.

    Article  CAS  Google Scholar 

  15. C.M. Cepeda-Jiménez, C. Prado-Martínez, and M.T. Pérez-Prado: Acta Mater., 2018, vol. 145, pp. 264–77.

    Article  Google Scholar 

  16. X. Wang, L. Jiang, D. Zhang, I.J. Beyerlein, S. Mahajan, T.J. Rupert, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2018, vol. 146, pp. 12–24.

    Article  CAS  Google Scholar 

  17. P. Hidalgo-Manrique, J.D. Robson, and M.T. Pérez-Prado: Acta Mater., 2017, vol. 124, pp. 456–67.

    Article  CAS  Google Scholar 

  18. E. Vasilev, N.C. Ferreri, R. Decker, I.J. Beyerlein, and M. Knezevic: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3858–68.

    Article  Google Scholar 

  19. A.E. Davis, J.D. Robson, and M. Turski: Mater. Sci. Eng. A, 2019, vol. 744, pp. 525–37.

    Article  CAS  Google Scholar 

  20. S.A. Habib, A.S. Khan, T. Gnäupel-Herold, J.T. Lloyd, and S.E. Schoenfeld: Int. J. Plast., 2017, vol. 95, pp. 163–90.

    Article  CAS  Google Scholar 

  21. J. Bohlen, S. Yi, D. Letzig, and K.U. Kainer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7092–98.

    Article  Google Scholar 

  22. Y. Chai, D. Yin, S. Hua, G. Huang, H. Zhou, J. Zheng, and Q. Wang: T. Nonferr. Metal. Soc., 2022, vol. 32, pp. 3534–49.

    Article  CAS  Google Scholar 

  23. D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, and Q.D. Wang: Int. J. Plast., 2021, vol. 136, p. 102878.

    Article  CAS  Google Scholar 

  24. L.J. Long, G.H. Huang, D.D. Yin, B. Ji, H. Zhou, and Q.D. Wang: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2738–51.

    Article  Google Scholar 

  25. K. Luo, L. Zhang, G.H. Wu, W.C. Liu, and W.J. Ding: J. Magnes. Alloy., 2019, vol. 7, pp. 345–54.

    Article  CAS  Google Scholar 

  26. G.H. Huang, D.D. Yin, J.W. Lu, H. Zhou, Y. Zeng, G.F. Quan, and Q.D. Wang: Mater. Sci. Eng. A, 2018, vol. 720, pp. 24–35.

    Article  CAS  Google Scholar 

  27. A. Imandoust, C.D. Barrett, T. Al-Samman, K.A. Inal, and H. El Kadiri: J. Mater. Sci., 2017, vol. 52, pp. 1–29.

    Article  CAS  Google Scholar 

  28. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.

    Article  CAS  Google Scholar 

  29. S. Hua, Z.W. Jiang, Y.F. Wan, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, and D.D. Yin: Mater. Sci. Eng. A, 2021, vol. 825, p. 141927.

    Article  CAS  Google Scholar 

  30. K. Wei, L.R. Xiao, B. Gao, L. Li, Y. Liu, Z.G. Ding, W. Liu, H. Zhou, and Y.H. Zhao: J. Magnes Alloy, 2020, vol. 8, pp. 1221–27.

    Article  CAS  Google Scholar 

  31. C. Zhao, Z. Li, J. Shi, X. Chen, T. Tu, Z. Luo, R. Cheng, A. Atrens, and F. Pan: J. Magnes. Alloy, 2019, vol. 7, pp. 672–80.

    Article  CAS  Google Scholar 

  32. L. Gao, R.S. Chen, and E.H. Han: J. Alloy Compd., 2009, vol. 481, pp. 379–84.

    Article  CAS  Google Scholar 

  33. R. Ahmad, Z.X. Wu, and W.A. Curtin: Acta Mater., 2020, vol. 183, pp. 228–41.

    Article  CAS  Google Scholar 

  34. Z.X. Wu, R. Ahmad, B.L. Yin, S. Sandlöbes, and W.A. Curtin: Science, 2018, vol. 359, pp. 447–52.

    Article  CAS  PubMed  Google Scholar 

  35. R. Ni, Z.W. Jiang, D.D. Yin, W. Yang, H. Zhou, J. Zheng, and Q.D. Wang: Metall. Mater. Trans. A, 2022, vol. 53A, pp. 535–55.

    Article  Google Scholar 

  36. S.R. Kalidindi, A. Abusafieh, and E. El-Danaf: Exp. Mech., 1997, vol. 37, pp. 210–15.

    Article  CAS  Google Scholar 

  37. S.R. Agnew and Ö. Duygulu: Int. J. Plast., 2005, vol. 21, pp. 1161–93.

    Article  CAS  Google Scholar 

  38. R. Hielscher, C.B. Silbermann, E. Schmidl, and J. Ihlemann: J. Appl. Crystallogr., 2019, vol. 52, pp. 984–96.

    Article  CAS  Google Scholar 

  39. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–68.

    Article  CAS  Google Scholar 

  40. B.S. El-Dasher, B.L. Adams, and A.D. Rollett: Scr. Mater., 2003, vol. 48, pp. 141–45.

    Article  CAS  Google Scholar 

  41. R. Ni, S.J. Ma, L.J. Long, J. Zheng, H. Zhou, Q.D. Wang, and D.D. Yin: Mater. Sci. Eng. A, 2021, vol. 804, p. 140738.

    Article  CAS  Google Scholar 

  42. W.X. Wu, L. Jin, J. Dong, and W.J. Ding: Mater. Sci. Eng. A, 2014, vol. 593, pp. 48–54.

    Article  CAS  Google Scholar 

  43. L. Wang, Z. Huang, H. Wang, A. Maldar, S. Yi, J. Park, P. Kenesei, E. Lilleodden, and X. Zeng: Acta Mater., 2018, vol. 155, pp. 138–52.

    Article  CAS  Google Scholar 

  44. A. Githens, S. Ganesan, Z. Chen, J. Allison, V. Sundararaghavan, and S. Daly: Acta Mater., 2020, vol. 186, pp. 77–94.

    Article  CAS  Google Scholar 

  45. M. Kamaya: Mater. Charact., 2012, vol. 66, pp. 56–67.

    Article  CAS  Google Scholar 

  46. G. Martin, C.W. Sinclair, and J. Schmitt: Scr. Mater., 2013, vol. 68, pp. 695–98.

    Article  CAS  Google Scholar 

  47. A. Harte, M. Atkinson, M. Preuss, and J. Quinta Da Fonseca: Acta Mater., 2020, vol. 195, pp. 555–70.

    Article  CAS  Google Scholar 

  48. Y. Zeng, X. Xiong, X. Qian, D. Xia, X. Shang, B. Jiang, and D. Yin: Met. Mater. Int., 2023, vol. 29, pp. 1885–95.

    Article  Google Scholar 

  49. X. Hou, Z. Cao, L. Wang, S. Xu, S. Kamado, and L. Wang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7805–10.

    Article  CAS  Google Scholar 

  50. S. Lyu, R. Zheng, W. Xiao, Y. Huang, S. Gavras, N. Hort, G. Li, and C. Ma: Mater. Sci. Eng. A, 2019, vol. 760, pp. 426–30.

    Article  CAS  Google Scholar 

  51. M. Lentz, M. Klaus, I.J. Beyerlein, M. Zecevic, W. Reimers, and M. Knezevic: Acta Mater., 2015, vol. 86, pp. 254–68.

    Article  CAS  Google Scholar 

  52. H. Li, D.E. Mason, T.R. Bieler, C.J. Boehlert, and M.A. Crimp: Acta Mater., 2013, vol. 61, pp. 7555–67.

    Article  CAS  Google Scholar 

  53. D.D. Yin, Q.D. Wang, C.J. Boehlert, Z. Chen, H.M. Li, R.K. Mishra, and A. Chakkedath: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 6438–52.

    Article  Google Scholar 

  54. C. Albrecht, A. Kumar, S. Xu, A. Hunter, and I.J. Beyerlein: Phys. Rev. Mater., 2021, vol. 5, p. 43602.

    Article  CAS  Google Scholar 

  55. Z. Wu and W.A. Curtin: Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. 11137–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. I.P. Jones and W.B. Hutchinson: Acta Metall., 1981, vol. 29, pp. 951–68.

    Article  CAS  Google Scholar 

  57. T. Nogaret, W.A. Curtin, J.A. Yasi, L.G. Hector, and D.R. Trinkle: Acta Mater., 2010, vol. 58, pp. 4332–43.

    Article  CAS  Google Scholar 

  58. H. Tonda and S. Ando: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 831–36.

    Article  CAS  Google Scholar 

  59. C. Dai, P. Saidi, L.K. Béland, Z. Yao, and M.R. Daymond: Comp. Mater. Sci., 2019, vol. 170, p. 109183.

    Article  CAS  Google Scholar 

  60. P. Hidalgo-Manrique, V. Herrera-Solaz, J. Segurado, J. Llorca, F. Gálvez, O.A. Ruano, S.B. Yi, and M.T. Pérez-Prado: Acta Mater., 2015, vol. 92, pp. 265–77.

    Article  CAS  Google Scholar 

  61. S.S. Jiang, Y. Jia, X.K. Wang, and J.F. Jiang: Mater Charact, 2020, vol. 165, 110384.

    Article  CAS  Google Scholar 

  62. F. Di Gioacchino and J. Quinta Da Fonseca: Int. J. Plast., 2015, vol. 74, pp. 92–109.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52171125 and 52071178). We would like to thank the Analytical and Testing Center of Southwest Jiaotong University for assistance with SEM and EBSD characterization. We would like to thank Ms. Lin Ma for improving the English writing.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.B., Ni, R., Zheng, X.H. et al. Understanding the Reversed Tension–Compression Asymmetry of an Extruded Mg-10Y Sheet from the Perspective of Slip Activity and Plastic Heterogeneity. Metall Mater Trans A 55, 1673–1689 (2024). https://doi.org/10.1007/s11661-024-07360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-024-07360-5

Navigation