Skip to main content
Log in

Deformation mechanisms in Mg alloys and the challenge of extending room-temperature plasticity

  • Magnesium Sheet Processing
  • Overview
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Magnesium alloys show promise for application in formed components where weight saving is an advantage. In most instances forming is carried out at elevated temperatures. However, there are considerable gains to be had if forming can be carried out under ambient conditions. The present article outlines some of the difficulties that lie in the way of achieving this objective. The underlying metallurgical characteristics of the issues are considered and means for overcoming them are discussed. It is concluded that a combination of microstructure and texture control remains a promising strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.F. Emley, Principles of Magnesium Technology (Oxford: Pergamon Press, 1966).

    Google Scholar 

  2. M. Avedesian and H. Baker, editors, ASM Specialty Handbook Magnesium and Magnesium Alloys (Materials Park, OH: ASM International, 1999).

    Google Scholar 

  3. W.F. Hosford, The Mechanics of Crystals and Textured Polycrystals (New York: Oxford University Press, 1993), pp. 163–192.

    Google Scholar 

  4. M.H. Yoo, Metallurgical Transactions A, 12 (1981), pp. 409–418.

    Article  ADS  CAS  Google Scholar 

  5. M.R. Barnett, Materials Science and Engineering A, 464(1–2) (2007), pp. 8–16.

    Article  ADS  Google Scholar 

  6. T. Mukai et al., Scripta Materialia, 45(1) (2001), pp. 89–94.

    Article  CAS  Google Scholar 

  7. S.R. Agnew et al., Scripta Materialia, 50(3) (2004), pp. 377–381.

    Article  CAS  Google Scholar 

  8. Y.N. Wang and J.C. Huang, Materials Chemistry and Physics, 81(1) (2003), pp. 11–26.

    Article  CAS  Google Scholar 

  9. F.E. Hauser, P.R. Landon, and J.E. Dorn, Transactions of the American Society of Metals, 50 (1958), pp. 856–883.

    Google Scholar 

  10. J.C. McDonald, Transactions of the Metallurgical Society of AIME, 137 (1940), pp. 430–441.

    Google Scholar 

  11. W.J. Kim and H.T. Jeong, Materials Transactions, 46 (2005), pp. 251–258.

    Article  CAS  Google Scholar 

  12. M.R. Barnett, Materials Science and Engineering A, 464(1–2) (2007), pp. 1–7.

    Article  MathSciNet  Google Scholar 

  13. K. Iwanaga et al., Journal of Materials Processing Technology, 155–156 (2004), pp. 1313–1316.

    Article  Google Scholar 

  14. A.G. Beer, “The Evolution of Hot Working Stress and Microstructure in Mg-3Al-1Zn” (Ph.D. Thesis, Deakin University, Geelong, Australia, 2004).

    Google Scholar 

  15. E.A. Ball and B. Prangnell, Scripta Metallurgica et Materialia, 31(2) (1994), pp. 111–116.

    Article  CAS  Google Scholar 

  16. J.A. Chapman and D.V. Wilson, Journal of the Institute of Metals, 91 (1962), pp. 39–40.

    Google Scholar 

  17. D.V. Wilson and J.A. Chapman, Philosophical Magazine, 8 (1963), pp. 1543–1551.

    Article  ADS  Google Scholar 

  18. R.W. Armstrong, “Tensile Ductility Dependence on Polycrystal Grain Size,” 7th International Conference on the Strength of Metals and Alloys, ICSMA-7-CIRMA, ed. H.J. McQueen et al. (Oxford: Pergamon Press, 1986), pp. 195–200.

    Google Scholar 

  19. S.H. Kang, Y.S. Lee, and J.H. Lee, Journal of Materials Processing Technology, 201(1–3) (2008), pp. 436–440.

    Article  CAS  Google Scholar 

  20. M. Kai, Z. Horita, and T.G. Langdon, Materials Sc.ience and Engineering A, 488(1–2) (2008), pp. 117–124.

    Article  Google Scholar 

  21. M.T. Pérez-Prado et al., Scripta Materialia, 50(5) (2004), pp. 661–665.

    Article  Google Scholar 

  22. N. Stanford and M.R. Barnett, Journal of Alloys and Compounds, 466(1–2) (2008), pp. 182–188.

    Article  CAS  Google Scholar 

  23. J. Bohlen et al., Acta Materialia, 55(6) (2007), pp. 2101–2112.

    Article  CAS  Google Scholar 

  24. N. Stanford and M.R. Barnett, Materials Science and Engineering: A, 496 (2008), pp. 399–408.

    Article  Google Scholar 

  25. N. Stanford et al., Scripta Materialia, 59(7) (2008), pp. 772–775.

    Article  CAS  Google Scholar 

  26. L.W.F. Mackenzie and M.O. Pekguleryuz, Scripta Materialia, 59(6) (2008), pp. 665–668.

    Article  CAS  Google Scholar 

  27. A. Ahmadieh, J. Mitchell, and J.E. Dorn, Transactions of the Metallurgical Society of AIME, 233 (1965), pp. 1130–1138.

    CAS  Google Scholar 

  28. S.M. Zhu and J.F. Nie, Scripta Materialia, 50(1) (2004), pp. 51–55.

    Article  CAS  Google Scholar 

  29. S.L. Semiatin and J.J. Jonas, Formability & Workability of Metals (Metals Park, OH: ASM, 1984), p. 165.

    Google Scholar 

  30. M.R. Barnett, Scripta Materialia, 59(7) (2008), pp. 696–698.

    Article  CAS  MathSciNet  Google Scholar 

  31. P. Cizek and M.R. Barnett, Scripta Materialia, 59(9) (2008), pp. 959–962.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Barnett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, M.R., Stanford, N., Cizek, P. et al. Deformation mechanisms in Mg alloys and the challenge of extending room-temperature plasticity. JOM 61, 19–24 (2009). https://doi.org/10.1007/s11837-009-0115-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-009-0115-6

Keywords

Navigation