Skip to main content
Log in

Investigation on Slip Activity and Plastic Heterogeneity of Aged Mg–10Y Sheets During Compression

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Detailed quasi-in-situ grain-by-grain slip trace analysis and EBSD analysis were performed on the as-extruded, under-aged, and peak-aged Mg–10Y (wt pct) sheets to investigate the precipitate effects on the individual slip activities and plastic heterogeneity during room temperature compression. The sheet exhibited a significant age-hardening response whose yield strength increased by 63 pct after the peak-aged treatment. In the as-extruded condition, deformation was dominated by pyramidal II \(\langle c + a\rangle\) slip (42.3 pct) followed by basal \(\langle a\rangle\) slip (31.0 pct) and then pyramidal I \(\langle c + a\rangle\) slip (21.1 pct). After the peak-aged treatment, the frequency of basal \(\langle a\rangle\) slip increased to ~ 70 pct, and the pyramidal I/II slips significantly decreased to ~ 20 pct, which indicates the precipitate strengthening on pyramidal \(\langle c + a\rangle\) slips was significantly over basal \(\langle a\rangle\) slip. Most activated slip systems (68.2 pct) exhibited large normalized Schmid factors (\({m}_{\mathrm{nor}}\)> 0.3), but substantial (18.2 pct) hard-oriented slip systems (\({m}_{\mathrm{nor}}\)< 0.1) were also activated, suggesting local stress deviation. The magnitude/distribution of intragranular misorientation angle and geometrically necessary dislocation (GND) density inside a grain cannot be correlated with the visibility of slip trace from a statistical viewpoint. The extremely high GND density near grain boundary (GB) was closely related to (i) significant disparity of max Schmid factors for a particular slip mode and/or (ii) high GB misorientation between adjacent grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. G.H. Wu, C.L. Wang, M. Sun, and W.J. Ding: J. Magnes. Alloy., 2021, vol. 9, pp. 1–20.

    Article  CAS  Google Scholar 

  2. I.J. Polmear: Mater. Sci. Technol., 2013, vol. 10, pp. 1–16.

    Article  Google Scholar 

  3. K. Wei, L.R. Xiao, B. Gao, L. Li, Y. Liu, Z.G. Ding, W. Liu, H. Zhou, and Y.H. Zhao: J. Magnes. Alloy., 2020, vol. 8, pp. 1221–7.

    Article  CAS  Google Scholar 

  4. R. Ahmad, B.L. Yin, Z.X. Wu, and W.A. Curtin: Acta Mater., 2019, vol. 172, pp. 161–84.

    Article  CAS  Google Scholar 

  5. S. Sandlöbes, M. Friák, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 3011–21.

    Article  Google Scholar 

  6. Z.X. Wu, R. Ahmad, B.L. Yin, S. Sandlöbes, and W.A. Curtin: Science., 2018, vol. 359, pp. 447–52.

    Article  CAS  Google Scholar 

  7. L. Gao, R.S. Chen, and E.H. Han: J. Alloys Compd., 2009, vol. 481, pp. 379–84.

    Article  CAS  Google Scholar 

  8. J.F. Nie: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 3891–939.

    Article  Google Scholar 

  9. N. Ansari, R. Sarvesha, S.Y. Lee, S.S. Singh, and J. Jain: Mater. Sci. Eng. A., 2020, vol. 793, p. 139856.

    Article  CAS  Google Scholar 

  10. S.R. Agnew, L. Capolungo, and C.A. Calhoun: Acta Mater., 2015, vol. 82, pp. 255–65.

    Article  CAS  Google Scholar 

  11. G.H. Huang, D.D. Yin, J.W. Lu, H. Zhou, Y. Zeng, G.F. Quan, and Q.D. Wang: Mater. Sci. Eng. A., 2018, vol. 720, pp. 24–35.

    Article  CAS  Google Scholar 

  12. K. Luo, L. Zhang, G.H. Wu, W.C. Liu, and W.J. Ding: J. Magnes. Alloy., 2019, vol. 7, pp. 345–54.

    Article  CAS  Google Scholar 

  13. R. Cottam, J. Robson, G. Lorimer, and B. Davis: Mater. Sci. Eng. A., 2008, vol. 485, pp. 375–82.

    Article  Google Scholar 

  14. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.

    Article  CAS  Google Scholar 

  15. A. Imandoust, C.D. Barrett, T. Al-Samman, K.A. Inal, and H. El Kadiri: J. Mater. Sci., 2017, vol. 52, pp. 1–29.

    Article  CAS  Google Scholar 

  16. K. Maruyama, M. Suzuki, and H. Sato: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 875–82.

    Article  CAS  Google Scholar 

  17. C.Y. Zhao, Z.Y. Li, J.H. Shi, X.H. Chen, T. Tu, Z. Luo, R.J. Cheng, A. Atrens, and F.S. Pan: J. Magnes. Alloy., 2019, vol. 7, pp. 672–80.

    Article  CAS  Google Scholar 

  18. S. Hua, Z.W. Jiang, Y.F. Wan, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, and D.D. Yin: Mater. Sci. Eng. A., 2021, vol. 825, p. 141927.

    Article  CAS  Google Scholar 

  19. D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, and Q.D. Wang: Int. J. Plast., 2021, vol. 136, p. 102878.

    Article  CAS  Google Scholar 

  20. L.J. Long, G.H. Huang, D.D. Yin, B. Ji, H. Zhou, and Q.D. Wang: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 2738–51.

    Article  Google Scholar 

  21. S.R. Agnew, R.P. Mulay, F.J. Polesak, C.A. Calhoun, J.J. Bhattacharyya, and B. Clausen: Acta Mater., 2013, vol. 61, pp. 3769–80.

    Article  CAS  Google Scholar 

  22. J.J. Bhattacharyya, F. Wang, N. Stanford, and S.R. Agnew: Acta Mater., 2018, vol. 146, pp. 55–62.

    Article  CAS  Google Scholar 

  23. D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, and J. Zheng: J. Alloys Compd., 2011, vol. 509, pp. 1696–704.

    Article  CAS  Google Scholar 

  24. R. Ni, S.J. Ma, L.J. Long, J. Zheng, H. Zhou, Q.D. Wang, and D.D. Yin: Mater. Sci. Eng. A., 2021, vol. 804, p. 140738.

    Article  CAS  Google Scholar 

  25. T.Y. Zhu, P.H. Fu, L.M. Peng, X.Y. Hu, S.R. Zhu, and W.J. Ding: J. Magnes. Alloy., 2014, vol. 2, pp. 27–35.

    Article  CAS  Google Scholar 

  26. J. Jain, W.J. Poole, C.W. Sinclair, and M.A. Gharghouri: Scripta Mater., 2010, vol. 62, pp. 301–4.

    Article  CAS  Google Scholar 

  27. S.R. Kada, P.A. Lynch, J.A. Kimpton, and M.R. Barnett: Acta Mater., 2016, vol. 119, pp. 145–56.

    Article  CAS  Google Scholar 

  28. J.F. Nie: Scripta Mater., 2003, vol. 48, pp. 1009–15.

    Article  CAS  Google Scholar 

  29. F.L. Wang, J.J. Bhattacharyya, and S.R. Agnew: Mater. Sci. Eng. A., 2016, vol. 666, pp. 114–22.

    Article  CAS  Google Scholar 

  30. E.L.S. Solomon and E.A. Marquis: Mater. Lett., 2018, vol. 216, pp. 67–9.

    Article  CAS  Google Scholar 

  31. T. Nakata, J.J. Bhattacharyya, S.R. Agnew, and S. Kamado: Scripta Mater., 2019, vol. 169, pp. 70–5.

    Article  CAS  Google Scholar 

  32. C.Y. Wang, C.M. Cepeda-Jiménez, and M.T. Pérez-Prado: Acta Mater., 2020, vol. 194, pp. 190–206.

    Article  CAS  Google Scholar 

  33. F. Di Gioacchino and J. Quinta Da Fonseca: Int. J. Plast., 2015, vol. 74, pp. 92–109.

    Article  Google Scholar 

  34. S.S. Jiang, Y. Jia, X.K. Wang, and J.F. Jiang: Mater. Charact., 2020, vol. 165, p. 110384.

    Article  CAS  Google Scholar 

  35. G. Martin, C.W. Sinclair, and R.A. Lebensohn: Mater. Sci. Eng. A., 2014, vol. 603, pp. 37–51.

    Article  CAS  Google Scholar 

  36. M. Kamaya: Mater. Charact., 2012, vol. 66, pp. 56–67.

    Article  CAS  Google Scholar 

  37. Y.Q. Chai, C.J. Boehlert, Y.F. Wan, G.H. Huang, H. Zhou, J. Zheng, Q.D. Wang, and D.D. Yin: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 449–56.

    Article  Google Scholar 

  38. H. Wu and G.H. Fan: Prog. Mater. Sci., 2020, vol. 113, p. 100675.

    Article  Google Scholar 

  39. S.K. Das, Y.B. Kang, T.K. Ha, and I.H. Jung: Acta Mater., 2014, vol. 71, pp. 164–75.

    Article  CAS  Google Scholar 

  40. J.W. Lu, D.D. Yin, G.H. Huang, G.F. Quan, Y. Zeng, H. Zhou, and Q.D. Wang: Mater. Sci. Eng. A., 2017, vol. 700, pp. 598–608.

    Article  CAS  Google Scholar 

  41. S.K. Sahoo, S. Biswas, L.S. Toth, P.C. Gautam, and B. Beausir: Int. J. Plast., 2020, vol. 128, p. 102660.

    Article  CAS  Google Scholar 

  42. S.R. Kalidindi, A. Abusafieh, and E. El-Danaf: Exp. Mech., 1997, vol. 37, pp. 210–5.

    Article  CAS  Google Scholar 

  43. K. Wei, R. Hu, D.D. Yin, L.R. Xiao, S. Pang, Y. Cao, H. Zhou, Y.H. Zhao, and Y.T. Zhu: Acta Mater., 2021, vol. 206, p. 116604.

    Article  CAS  Google Scholar 

  44. Y.C. Deng, Z.J. Huang, T.J. Li, D.D. Yin, and J. Zheng: Metall. Mater. Trans. A., 2021, vol. 52A, pp. 332–49.

    Article  Google Scholar 

  45. D.D. Yin, Q.D. Wang, C.J. Boehlert, Z. Chen, H.M. Li, R.K. Mishra, and A. Chakkedath: Metall. Mater. Trans. A., 2016, vol. 47A, pp. 6438–52.

    Article  Google Scholar 

  46. H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin, and W.J. Ding: Int. J. Plast., 2016, vol. 84, pp. 255–76.

    Article  CAS  Google Scholar 

  47. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–8.

    Article  CAS  Google Scholar 

  48. R. Hielscher, C.B. Silbermann, E. Schmidl, and J. Ihlemann: J. Appl. Crystallogr., 2019, vol. 52, pp. 984–96.

    Article  CAS  Google Scholar 

  49. W. Pantleon: Scripta Mater., 2008, vol. 58, pp. 994–7.

    Article  CAS  Google Scholar 

  50. Y.D. Huang, L. Yang, S.H. You, W.M. Gan, K.U. Kainer, and N. Hort: J. Magnes. Alloy., 2016, vol. 4, pp. 173–80.

    Article  CAS  Google Scholar 

  51. N. Stanford and M.R. Barnett: Mater. Sci. Eng. A., 2008, vol. 496, pp. 399–408.

    Article  Google Scholar 

  52. M. Nishijima, K. Yubuta, and K. Hiraga: Mater. Trans., 2007, vol. 48, pp. 84–7.

    Article  CAS  Google Scholar 

  53. H. Liu, Y. Gao, J.Z. Liu, Y.M. Zhu, Y. Wang, and J.F. Nie: Acta Mater., 2013, vol. 61, pp. 453–66.

    Article  CAS  Google Scholar 

  54. Q.C. Zhu, Y.X. Li, Z.G. Ding, J. Wang, Y.X. Liu, H. Zhang, T. Xie, M.X. Wang, H. Zhu, T. Ying, W. Liu, and X.Q. Zeng: Mater. Des., 2021, vol. 202, p. 109570.

    Article  CAS  Google Scholar 

  55. C.J. Boehlert, Z. Chen, I. Gutiérrez-Urrutia, J. Llorca, and M.T. Pérez-Prado: Acta Mater., 2012, vol. 60, pp. 1889–904.

    Article  CAS  Google Scholar 

  56. C.M. Cepeda-Jiménez, C. Prado-Martínez, and M.T. Pérez-Prado: Acta Mater., 2018, vol. 145, pp. 264–77.

    Article  Google Scholar 

  57. A. Harte, M. Atkinson, M. Preuss, and J. Quinta Da Fonseca: Acta Mater., 2020, vol. 195, pp. 555–70.

    Article  CAS  Google Scholar 

  58. R. Alizadeh, M. Peña-Ortega, T.R. Bieler, and J. Llorca: Scripta Mater., 2020, vol. 178, pp. 408–12.

    Article  CAS  Google Scholar 

  59. T.R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D.E. Mason, M.A. Crimp, and D. Raabe: Int. J. Plast., 2009, vol. 25, pp. 1655–83.

    Article  CAS  Google Scholar 

  60. O. Muránsky, L. Balogh, M. Tran, C.J. Hamelin, J.S. Park, and M.R. Daymond: Acta Mater., 2019, vol. 175, pp. 297–313.

    Article  Google Scholar 

  61. A. Tang, H.T. Liu, G.S. Liu, Y. Zhong, L. Wang, Q. Lu, J. Wang, and Y. Shen: Phys. Rev. Lett., 2020, vol. 124, p. 155501.

    Article  CAS  Google Scholar 

  62. P. Hidalgo-Manrique, J.D. Robson, and M.T. Pérez-Prado: Acta Mater., 2017, vol. 124, pp. 456–67.

    Article  CAS  Google Scholar 

  63. C.M. Cepeda-Jiménez, M. Castillo-Rodríguez, and M.T. Pérez-Prado: Acta Mater., 2019, vol. 165, pp. 164–76.

    Article  Google Scholar 

  64. J.F. Nie, K.S. Shin, and Z.R. Zeng: Metall. Mater. Trans. A., 2020, vol. 51A, pp. 6045–109.

    Article  Google Scholar 

  65. S.A. Habib, A.S. Khan, T. Gnäupel-Herold, J.T. Lloyd, and S.E. Schoenfeld: Int. J. Plast., 2017, vol. 95, pp. 163–90.

    Article  CAS  Google Scholar 

  66. R. Ahmad, Z.X. Wu, and W.A. Curtin: Acta Mater., 2020, vol. 183, pp. 228–41.

    Article  CAS  Google Scholar 

  67. K. Thool, A. Patra, D. Fullwood, K.V.M. Krishna, D. Srivastava, and I. Samajdar: Int. J. Plast., 2020, vol. 133, p. 102785.

    Article  CAS  Google Scholar 

  68. G. Martin, C.W. Sinclair, and J.H. Schmitt: Scripta Mater., 2013, vol. 68, pp. 695–8.

    Article  CAS  Google Scholar 

  69. N. Allain-Bonasso, F. Wagner, S. Berbenni, and D.P. Field: Mater. Sci. Eng. A., 2012, vol. 548, pp. 56–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 52171125 and 52071178), Fundamental Research Funds for the Central Universities (2682020ZT114), and Open Funding of International Joint Laboratory for Light Alloys (MOE), Chongqing University. We would like to thank the Analytical and Testing Center of Southwest Jiaotong University for assistance with SEM and EBSD characterization.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 9, 2021; accepted October 27, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, R., Jiang, Z.W., Yin, D.D. et al. Investigation on Slip Activity and Plastic Heterogeneity of Aged Mg–10Y Sheets During Compression. Metall Mater Trans A 53, 535–555 (2022). https://doi.org/10.1007/s11661-021-06523-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06523-y

Navigation