Skip to main content

Advertisement

Log in

Effect of Nb Precipitates and Reversed Austenite Formed by QLT Process on Microstructure and Mechanical Properties of Nb-Bearing 7Ni Cryogenic Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The application of Ni-containing steels with excellent cryogenic toughness is limited by the high price of Ni resources. This study aims to explore the optimal process for quenching-intercritical annealing-tempering (QLT) treatment of newly designed low-cost Nb-bearing 7Ni steel. The effect of Nb microalloying on the strength-toughness combination and reversed austenite nucleation characteristics was investigated. The results show that the optimal comprehensive mechanical properties are obtained after intercritical annealing at 670 °C, and the cryogenic toughness is even better than that of 9Ni steel. The extra yield strength (~32 MPa) is attributed to the synergism of the refined martensite microstructure units for various strengthening mechanisms, caused by the addition of 0.04 pct Nb. The increased toughness is associated with the high proportion of high-angle grain boundaries (HAGBs) produced by the close-packeted plane (CP) group-dominated transformation. Such transformation provides more efficient nucleation sites, which preferentially locate at the lath boundaries and block boundaries, exhibiting film-like morphology. Although NbC precipitation attracts C atoms, which, on the other hand, induce nucleation and stabilize the reversed austenite. These results provide a novel design strategy for nickel-saving steel alloys towards liquefied natural gas (LNG) and hydrogen storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.S. Sohn, S. Hong, J. Lee, B.C. Suh, S.K. Kim, B.J. Lee, N.J. Kim, and S. Lee: Acta Mater., 2015, vol. 100, pp. 39–52.

    Article  CAS  Google Scholar 

  2. M.T. Kim, T.M. Park, K.H. Baik, W.S. Choi, P.P. Choi, and J. Han: Acta Mater., 2019, vol. 164, pp. 122–34.

    Article  CAS  Google Scholar 

  3. P. Zhou, L. Wang, C. Cui, Y. Hu, and K. Xu: J. Mater. Eng. Perform., 2023, vol. 32, pp. 8949–60.

    Article  CAS  Google Scholar 

  4. F. Lebel, E. Abi-Aad, B. Duponchel, I.P. Serre, S. Ringot, P. Langry, and A. Aboukaïs: Mater. Des., 2013, vol. 44, pp. 283–90.

    Article  CAS  Google Scholar 

  5. Y.H. Yang, Q.W. Cai, D. Tang, and H.B. Wu: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 587–95.

    Article  CAS  Google Scholar 

  6. A. Scheid, L.M. Félix, D. Martinazzi, T. Renck, and C.E.F. Kwietniewski: Mater. Sci. Eng. A, 2016, vol. 661, pp. 96–104.

    Article  CAS  Google Scholar 

  7. M. Wang, Z.Y. Liu, and C.G. Li: Acta Metall. Sin. (English Lett.), 2017, vol. 30, pp. 238–49.

    Article  CAS  Google Scholar 

  8. G. Gao, H. Zhang, X. Gui, P. Luo, Z. Tan, and B. Bai: Acta Mater., 2014, vol. 76, pp. 425–33.

    Article  CAS  Google Scholar 

  9. A. El-Batahgy, A. Saiyah, S. Khafagi, A. Gumenyuk, S. Gook, and M. Rethmeier: Sci. Technol. Weld. Join., 2021, vol. 26, pp. 116–22.

    Article  CAS  Google Scholar 

  10. T. Xu, Y. Shi, Z. Jiang, L. Wu, Y. Ma, and Z. Wang: Mater. Sci. Eng. A, 2022, vol. 835, 142661.

    Article  CAS  Google Scholar 

  11. N. Nakada, J. Syarif, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2004, vol. 374, pp. 137–44.

    Article  Google Scholar 

  12. Q.Y. Chen, W.N. Zhang, J.K. Ren, M. Wang, Z.L. Xie, J. Chen, and Z.Y. Liu: Steel Res. Int., 2021, vol. 92, pp. 1–10.

    Google Scholar 

  13. S.J. Wu, G.J. Sun, Q.S. Ma, Q.Y. Shen, and L. Xu: J. Mater. Process. Technol., 2013, vol. 213, pp. 120–28.

    Article  CAS  Google Scholar 

  14. Q.Y. Chen, J.K. Ren, Z.L. Xie, W.N. Zhang, J. Chen, and Z.Y. Liu: J. Mater. Sci., 2020, vol. 55, pp. 1840–53.

    Article  CAS  Google Scholar 

  15. L.D. Teng, T.T. Zhao, T.F. Cheng, and Y.T. Yang: J. Iron. Steel Res. Int., 2020, vol. 27, pp. 1456–65.

    Article  Google Scholar 

  16. Y. Wang, J. Sun, T. Jiang, Y. Sun, S. Guo, and Y. Liu: Acta Mater., 2018, vol. 158, pp. 247–56.

    Article  CAS  Google Scholar 

  17. W. Hou, Q. Liu, and J. Gu: Mater. Sci. Eng. A, 2020, vol. 780, p. 139186.

    Article  CAS  Google Scholar 

  18. X.P. Ma, L.J. Wang, C.M. Liu, and S.V. Subramanian: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6812–18.

    Article  CAS  Google Scholar 

  19. D.Y. Wu, X.L. Han, H.T. Tian, B. Liao, and F.R. Xiao: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1973–984.

    Article  CAS  Google Scholar 

  20. H.T. Wang, Y. Tian, Q.B. Ye, R.D.K. Misra, Z.D. Wang, and G.D. Wang: Mater. Sci. Eng. A, 2019, vol. 761, 138009.

    Article  CAS  Google Scholar 

  21. J. Chen, M.Y. Lv, Z.Y. Liu, and G.D. Wang: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2300–312.

    Article  CAS  Google Scholar 

  22. H.W. Cao, X.H. Luo, G.F. Zhan, and S. Liu: Acta Metall. Sin. (English Lett.), 2018, vol. 31, pp. 975–82.

    Article  CAS  Google Scholar 

  23. Z.J. Xie, B. Langelier, Y.T. Tsai, C.J. Shang, J.R. Yang, S.V. Subramanian, X.P. Ma, and X.L. Wang: Mater. Sci. Eng. A, 2019, vol. 763, 138149.

    Article  CAS  Google Scholar 

  24. H. Liu, P. Fu, H. Liu, C. Sun, N. Du, and D. Li: Mater. Sci. Eng. A, 2022, vol. 842, 143030.

    Article  CAS  Google Scholar 

  25. M. Bhattacharyya, B. Langelier, and H.S. Zurob: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3674–682.

    Article  CAS  Google Scholar 

  26. A.R. Jones and B. Ralph: Acta Metall., 1975, vol. 23, pp. 355–63.

    Article  CAS  Google Scholar 

  27. X. Wei, X. Cao, J.H. Luan, Z.B. Jiao, C.T. Liu, and Z.W. Zhang: Mater. Sci. Eng. A, 2022, vol. 832, 142487.

    Article  CAS  Google Scholar 

  28. Y. Zhang, H. Wu, X. Yu, D. Tang, R. Yuan, and H. Sun: J. Mater. Res. Technol., 2021, vol. 12, pp. 2114–127.

    Article  CAS  Google Scholar 

  29. L.P. Kubin and A. Mortensen: Scr. Mater., 2003, vol. 48, pp. 119–25.

    Article  CAS  Google Scholar 

  30. J.S. Wang, M.D. Mulholland, G.B. Olson, and D.N. Seidman: Acta Mater., 2013, vol. 61, pp. 4939–952.

    Article  CAS  Google Scholar 

  31. T. Liu, Z. Cao, H. Wang, G. Wu, J. Jin, and W. Cao: Scr. Mater., 2020, vol. 178, pp. 285–89.

    Article  CAS  Google Scholar 

  32. Y. Liang, S. Long, P. Xu, Y. Lu, Y. Jiang, Y. Liang, and M. Yang: Mater. Sci. Eng. A, 2017, vol. 695, pp. 154–64.

    Article  CAS  Google Scholar 

  33. L. Rancel, M. Gómez, S.F. Medina, and I. Gutierrez: Mater. Sci. Eng. A, 2011, vol. 530, pp. 21–7.

    Article  CAS  Google Scholar 

  34. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–331.

    Article  CAS  Google Scholar 

  35. Z. Guo, C.S. Lee, and J.W. Morris: Acta Mater., 2004, vol. 52, pp. 5511–518.

    Article  CAS  Google Scholar 

  36. T. Ohmura, A.M. Minor, E.A. Stach, and J.W. Morris: J. Mater. Res., 2004, vol. 19, pp. 3626–632.

    Article  CAS  Google Scholar 

  37. C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and Z. Yan: Mater. Des., 2012, vol. 36, pp. 220–26.

    Article  CAS  Google Scholar 

  38. G. Gao, B. Gao, X. Gui, J. Hu, J. He, Z. Tan, and B. Bai: Mater. Sci. Eng. A, 2019, vol. 753, pp. 1–0.

    Article  CAS  Google Scholar 

  39. H. Luo, X. Wang, Z. Liu, and Z. Yang: J. Mater. Sci. Technol., 2020, vol. 51, pp. 130–36.

    Article  CAS  Google Scholar 

  40. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–288.

    Article  CAS  Google Scholar 

  41. X.L. Wang, Z.Q. Wang, X.P. Ma, S.V. Subramanian, Z.J. Xie, C.J. Shang, and X.C. Li: Mater Charact, 2018, vol. 140, pp. 312–19.

    Article  CAS  Google Scholar 

  42. C. Celada-Casero, J. Sietsma, and M.J. Santofimia: Mater. Des., 2019, vol. 167, 107625.

    Article  CAS  Google Scholar 

  43. N. Takayama, G. Miyamoto, and T. Furuhara: Acta Mater., 2018, vol. 145, pp. 154–64.

    Article  CAS  Google Scholar 

  44. J. Hu, L.X. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Misra: Mater Charact, 2018, vol. 136, pp. 20–8.

    Article  CAS  Google Scholar 

  45. H. Pan, H. Ding, and M. Cai: Mater. Sci. Eng. A, 2018, vol. 736, pp. 375–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (2017YFB0305003). G. Niu also appreciates the support from the China Postdoctoral Science Foundation (2022M720402).

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huibin Wu or Gang Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E., Ding, C., Gong, N. et al. Effect of Nb Precipitates and Reversed Austenite Formed by QLT Process on Microstructure and Mechanical Properties of Nb-Bearing 7Ni Cryogenic Steel. Metall Mater Trans A 55, 247–260 (2024). https://doi.org/10.1007/s11661-023-07246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07246-y

Navigation