Skip to main content
Log in

Microstructural Characterization and Mechanical Properties Analysis of Weld Metals with Two Ni Contents During Post-Weld Heat Treatments

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study designed post-weld heat treatments, including reheating and tempering, associated with hot bending to investigate the microstructures, toughness, and hardness of two weld metals with different Ni contents (<1 wt pct level). The results indicated that a high Ni content decreased the ferrite transformation temperature and increased the proportion of acicular ferrite (AF). Furthermore, a high Ni content promoted the martensite/austenite (M/A) constituent formation after reheating. The promotion of the M/A formation increased the number of cementite particles, and accelerated cementite coarsening during tempering. The large-angle grain boundary density from the AF improved the toughness despite the negative effect of cementite. The strengthening contributions were calculated, and the grain refinement was the greatest. The high Ni content decreased the effective grain size with a 2 deg tolerance angle, thus enhancing the grain refinement contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F. Grimpe, S. Meimeth, H. Meuser, E. Muthmann, A. Liessem, and C. Stallybrass: Proceedings of the International Conference on New Developments on Metallurgy and Applications of High Strength Steels. Buenos Aires, 2008. vol. 1. pp. 493–506.

  2. W. Wang, Y.Y. Shan, K. Yang: Mater. Sci. Eng. A, 2009, vol. 502, pp. 38-44.

    Article  Google Scholar 

  3. D. Boyd, I. Yakubtsov, R. Zhang, P. Poruks: in: W. Chen (Ed.), Pipelines for the 21st Century, CIM, Montreal, 2005, p. 63.

    Google Scholar 

  4. F.R. Xiao, B. Liao, D.L. Ren, Y.Y. Shan, K. Yang: Mater. Charact., 2005, vol. 54, pp. 305-314.

    Article  Google Scholar 

  5. J. Xu, R.D.K. Misra, B. Guo, Z. Jia, L. Zheng: Mater. Sci. Eng. A, 2013, vol. 574, pp. 94-103.

    Article  Google Scholar 

  6. C.P. Reip, S. Shanmugam, R.D.K. Misra: Mater. Sci. Eng. A, 2006, vol. 424, pp. 307-317.

    Article  Google Scholar 

  7. X.W. Chen, G.Y. Qiao, X.L. Han, X. Wang, F.R. Xiao, B. Liao: Mater. Des., 2014, vol. 53, pp. 888-901.

    Article  Google Scholar 

  8. N.C. Tang: Int. J. Pres. Ves. Pip., 2000, vol. 77, pp. 751-759.

    Article  Google Scholar 

  9. R.A. Silva: Correlation Between the Induction Hot Bending Parameters for API X80 Pipe and the Resulting Mechanical Properties, p.81 (M.Sc. Dissertation), DEMA, PUC-Rio, 2009.

  10. Z. Zhang and R.A. Farrar: Weld. J., 1997, vol. 76, pp. 183-196.

    Google Scholar 

  11. B.Y. Kang, H.J. Kim, S.K. Hwang: ISIJ Int., 2000, vol. 40, pp. 1237-1245.

    Article  Google Scholar 

  12. V.B. Trindade, J.C. Payao, L.F.G. Souza, R.R. Paranhos: Exacta, São Paulo, 2007, vol. 5, pp. 177-183.

    Google Scholar 

  13. X.L. Han, X.L. Min, G.P. Li, and Y.Y. Yang: China, CN 103240512 A, 2013-08-14.

  14. M. Hillert: Metall. Trans. A, 1984, vol. 15A, pp. 411-419.

    Article  Google Scholar 

  15. S. Shanmugam, R.D.K. Misra, J. Hartmann, S.G. Jansto: Mater. Sci. Eng. A, 2006, vol. 441, pp. 215-229.

    Article  Google Scholar 

  16. J.M. Gregg, H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1603-1611.

    Article  Google Scholar 

  17. J.L. Lee, M.H. Hon, G.H. Cheng: J. Mater. Sci., 1987, vol. 22, pp. 2767-2777.

    Article  Google Scholar 

  18. L.J. Habraken and M. Economopolus: Transformation and Hardenability in Steels, Climax Molybfenum, Ann Arbor, Michigan, USA, 1967, p. 69-107.

    Google Scholar 

  19. Tenuta-Azevedo and Galvao-da-Silva: Scripta Metall. 1978, pp. 113–17.

  20. A.M. Guo, R.D.K. Misra, J. Xu, B. Guo, S.G. Jansto: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3886-3892.

    Article  Google Scholar 

  21. H. Kestenbach: Mater. Sci. Technol., 1997, vol. 13, pp. 731-739.

    Article  Google Scholar 

  22. L. Fan, T.L. Wang, Z.B. Fu, S. Zhang, Q.F. Wang: Mater. Sci. Eng. A, 2014, vol. 607, pp. 559-568.

    Article  Google Scholar 

  23. M. Díaz-Fuentes, A. Iza-Mendia, I. Gutiérrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505-2516.

    Article  Google Scholar 

  24. K.B. Kang, S.H. Chon, and J.Y. Yoo: Proceedings of the Twenty-second (2012) International Offshore and Polar Engineering Conference, Rhodes, Greece, 2012. pp. 17–22

  25. A. Iza-Mendia, I. Gutiérrez: Mater. Sci. Eng. A, 2013, vol. 561, pp. 40-51.

    Article  Google Scholar 

  26. G.M. Evans: Weld. Res. Abroad, 1991, vol. 41, pp. 70-83.

    Google Scholar 

  27. Y.M. Kim, H. Lee, N.J. Kim, and J.Y. Yoo: The Fifteenth International Offshore and Polar Engineering Conference, Seoul, Korea, 2005. pp. 19–24

  28. B. Demir, M. Erdoğan: J. Mater. Process. Technol., 2008, vol. 208, pp. 75-84.

    Article  Google Scholar 

  29. R. Wagner, R. Kampmann, and P. Hassen eds.: Mater. Sci. Technol., Vol. 5: Phase Transformations in Materials, 5th ed., p. 213, VCH Verlagsgesellschaft, Weinheim, 1991.

  30. C. Blais, G. L’Esperance, G.M. Evans: Sci. Technol. Weld. Join., 1999, vol. 4, pp. 143-150.

    Article  Google Scholar 

  31. T. Suzuki, J. Inoue, and T. Koseki: Proceedings of the 8th International Conference, ASM International, Material Park, Ohio, 2009, pp. 292–295.

  32. T. Gladman: The physical metallurgy of microalloyed steels, 1st ed., The University Press, Cambridge 1997.

    Google Scholar 

  33. J. Hu, L.X. Du, J.J. Wang, H. Xie, C.R. Gao, R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 590, pp. 323-328.

    Article  Google Scholar 

  34. Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda: ISIJ Int., 2004, vol. 44, pp. 1945-1951.

    Article  Google Scholar 

  35. W.K. Kim, H.G. Jung, G.T. Park, S.U. Koh, K.Y. Kim: Scripta Mater., 2010, vol. 62, pp. 195-198.

    Article  Google Scholar 

  36. I.A. Yakubtsov, P. Poruks, J.D. Boyd: Mater. Sci. Eng. A, 2008, vol. 480, pp. 109-116.

    Article  Google Scholar 

  37. M. Gomez, P. Valles, S.F. Medina: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4761-4773.

    Article  Google Scholar 

  38. T. Gladman, D. Dulieu, I.D. McIvor: Microalloying, Union Carbide Corporation, New York, 1977.

    Google Scholar 

  39. E.V. Morales, R.A. Silva, I.S. Bott, S. Paciornik: Mater. Sci. Eng. A, 2013, vol. 585, pp. 253-260.

    Article  Google Scholar 

  40. E. Demir, D. Raabe, N. Zaafarani, S. Zaefferer: Acta Mater., 2009, vol. 57, pp. 559-569.

    Article  Google Scholar 

  41. M. Olasolo: Ph.D. Thesis, Tecnun (University of Navarra) 2011.

  42. S.J. Kim, H.G. Jung, K.Y. Kim: Scripta Mater., 2012, vol. 67, pp. 895-898.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Natural Science Foundation of China (51171162); the R&D Project of CITIC-CBMM (2011-D056-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-ren Xiao.

Additional information

Manuscript submitted October 13, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Dy., Han, Xl., Tian, Ht. et al. Microstructural Characterization and Mechanical Properties Analysis of Weld Metals with Two Ni Contents During Post-Weld Heat Treatments. Metall Mater Trans A 46, 1973–1984 (2015). https://doi.org/10.1007/s11661-015-2790-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2790-y

Keywords

Navigation