Skip to main content
Log in

Influence of Intercritical Temperature on the Microstructure and Mechanical Properties of 6.5 Pct Ni Steel Processed by Ultra-fast Cooling, Intercritical Quenching and Tempering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A novel treatment comprised of ultra-fast cooling, intercritical quenching and tempering is proposed to modify the microstructure and improve the mechanical properties of low-concentration Ni-containing steel (6.5 pct Ni steel). The influence of intercritical temperature on the microstructure and mechanical properties has been systemically investigated. The results reveal that a mixed microstructure of alloy-depleted intercritical ferrite and alloy-enriched fresh martensite and retained austenite is obtained after intercritical quenching. Moreover, reversed austenite is formed at the grain boundaries of fresh martensite and retained austenite during subsequent tempering. Furthermore, the increase in intercritical temperature promoted the formation of lath-like fresh martensite, leading to the refinement of intercritical ferrite and the formation of secondary acicular reversed austenite. When the intercritical temperature was increased to 670 °C and 700 °C, reversed austenite exhibited sufficient stability at − 196 °C because of the fine-grained structure and acicular morphology. Finally, an optimal combination of strength and cryogenic toughness has been achieved by intercritical quenching from 700 °C. The obtained high yield strength can be ascribed to the decrease in the amount and size of intercritical ferrite, whereas excellent cryogenic toughness can be attributed to the increase in fine-grained stable acicular reversed austenite and decrease in effective grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Hoshino, N. Saitoh, H. Muraoka and O. Saeki: Nippon. Steel Tech. Rep., 2004, vol. 90, pp. 20-24.

    Google Scholar 

  2. N. Nakada, J. Syarif, T. Tsuchiyama and S. Takaki: Mater. Sci. Eng. A, 2004, vol. 374, pp. 137-144.

    Article  Google Scholar 

  3. C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan and J.W. Morris: Acta Mater., 2014, vol. 69, pp. 372-385.

    Article  CAS  Google Scholar 

  4. W.S. Lee and T.T. Su: J. Mater. Process. Technol., 1999, vol. 87, pp. 198-206.

    Article  Google Scholar 

  5. J.R. Strife and D.E. Passoja: Metall. Trans. A, 1980, vol. 11, pp. 1341-1350.

    Article  CAS  Google Scholar 

  6. J.I. Kim, C.K. Syn and J.W. Morris: Metall. Trans. A, 1983, vol. 14, pp. 93-103.

    Article  Google Scholar 

  7. Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo and C.J. Shang: Mater. Des., 2014, vol. 59, pp. 193-198.

    Article  CAS  Google Scholar 

  8. R. Ding, D. Tang and A.M. Zhao: Scr. Mater., 2014, vol. 88, pp. 21-24.

    Article  CAS  Google Scholar 

  9. Y. Zou, Y.B. Xu, Z.P. Hu, X.L. Gu, F. Peng, X.D. Tan, S.Q. Chen, D.T. Han, R.D.K. Misra and G.D. Wang: Mater. Sci. Eng. A, 2016, vol. 675, pp. 153-163.

    Article  CAS  Google Scholar 

  10. J.N. Zhu, R. Ding, J.G. He, Z.G. Yang, C. Zhang and H. Chen: Scr. Mater., 2017, vol. 136, pp. 6-10.

    Article  CAS  Google Scholar 

  11. Y.C. Lin and M.S. Chen: J. Mater. Sci., 2009, vol. 44, pp. 835-842.

    Article  CAS  Google Scholar 

  12. S.V. Ravikumar, J.M. Jha, S.S. Mohapatra, S.K. Pal and S. Chakraborty: Steel Res. Int., 2013, vol. 84, pp. 1157-1170.

    Article  CAS  Google Scholar 

  13. M. Wang and Z.Y. Liu: J. Mater. Eng. Perform., 2017, vol. 26, pp. 3016-3024.

    Article  CAS  Google Scholar 

  14. M. Wang, Z.Y. Liu and C.G. Li: Acta Metall. Sin., 2017, vol. 53, pp. 947-956.

    CAS  Google Scholar 

  15. K.I. Sugimoto, N. Usui, M. Kobayashi and S.I. Hashimoto: ISIJ Int., 1992, vol. 32, pp. 1311-1318.

    Article  CAS  Google Scholar 

  16. S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2005, vol. 36, pp. 3281-3289.

    Article  CAS  Google Scholar 

  17. Y. You, C.J. Shang, L. Chen and S. Subramanian: Mater. Sci. Eng. A, 2012, vol. 546, pp. 111-118.

    Article  CAS  Google Scholar 

  18. T. Tsuchiyama, T. Inoue, J. Tobata, D. Akama and S. Takaki: Scr. Mater., 2016, vol. 122, pp. 36-39.

    Article  CAS  Google Scholar 

  19. DIN EN 10028-4, Nickel alloy steels with specified low temperature properties, DIN EN-Normen, Beuth-Verlag Berlin, 2017.

  20. C. Zhao, C. Zhang, W.Q. Cao, Z.G. Yang and Y.Q. Weng: Metall. Mater. Trans. A, 2015, vol. 46, pp. 3789-3792.

    Article  Google Scholar 

  21. S.J. Lee, S. Lee and B.C.D. Cooman: Scr. Mater., 2011, vol. 64, pp. 649-652.

    Article  CAS  Google Scholar 

  22. S. Lee, S.J. Lee and B.C.D. Cooman: Scr. Mater., 2011, vol. 65, pp. 225-228.

    Article  CAS  Google Scholar 

  23. Z.C. Li, H. Ding, R.D.K. Misra and Z.H. Cai: Mater. Sci. Eng. A, 2017, vol. 682, pp. 211-219.

    Article  CAS  Google Scholar 

  24. A. Basuki and E. Aernoudt: J. Mater. Process. Technol., 1999, vol. 89-90, pp. 37-43.

    Article  Google Scholar 

  25. I.B. Timokhina, P.D. Hodgson and E.V. Pereloma: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2331-2341.

    Article  CAS  Google Scholar 

  26. J. Mahieu, B.C.D. Cooman and J. Maki: Metall. Mater. Trans. A, 2002, vol. 33, pp. 2573-2580.

    Article  CAS  Google Scholar 

  27. S. Kang, E.D. Moor and J.G. Speer: Metall. Mater. Trans. A, 2015, vol. 46, pp. 1005-1011.

    Article  Google Scholar 

  28. E. Jimenez-Melero, N.H.V. Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright and S.V.D. Zwaag: Scr. Mater., 2007, vol. 56, pp. 421-424.

    Article  CAS  Google Scholar 

  29. S. Lee and B.C.D. Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5018-5024.

    Article  Google Scholar 

  30. H.W. Luo: Scr. Mater., 2012, vol. 66, pp. 829-831.

    Article  CAS  Google Scholar 

  31. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang and L. Wang: Scr. Mater., 2013, vol. 68, pp. 321-324.

    Article  CAS  Google Scholar 

  32. S. Lee and B.C.D. Cooman: Metall. Mater. Trans. A, 2014, vol. 45, pp. 6039-6052.

    Article  Google Scholar 

  33. E.J. Seo, L. Cho, Y. Estrin and B.C.D. Cooman: Acta Mater., 2016, vol. 113, pp. 124-139.

    Article  CAS  Google Scholar 

  34. J. Han, S.J. Lee, J.G. Jung and Y.K. Lee: Acta Mater., 2014, vol. 78, pp. 369-377.

    Article  CAS  Google Scholar 

  35. W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui and H. Dong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6661-6666.

    Article  CAS  Google Scholar 

  36. P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng and W. Liu: Mater. Des., 2014, vol. 54, pp. 874-879.

    Article  CAS  Google Scholar 

  37. K.J. Kim and L.H. Schwartz: Mater. Sci. Eng., 1978, vol. 33, pp. 5-20.

    Article  CAS  Google Scholar 

  38. P.D. Bilmes, M. Solari and C.L. Llorente: Mater. Charact., 2001, vol. 46, pp. 285-296.

    Article  CAS  Google Scholar 

  39. G.H. Gao, H. Zhang, X.L. Gui, P. Luo, Z.L. Tan and B.Z. Bai: Acta Mater., 2014, vol. 76, pp. 425-433.

    Article  CAS  Google Scholar 

  40. C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui and H. Dong: Scr. Mater., 2008, vol. 58, pp. 492-495.

    Article  CAS  Google Scholar 

  41. B.X. Wang and J.B. Lian: Mater. Sci. Eng. A, 2014, vol. 592, pp. 50-56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFB0305000) and the Fundamental Research Funds for Central Universities (Grant No. N170708018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Yu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 24, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, QY., Zhang, WN., Xie, ZL. et al. Influence of Intercritical Temperature on the Microstructure and Mechanical Properties of 6.5 Pct Ni Steel Processed by Ultra-fast Cooling, Intercritical Quenching and Tempering. Metall Mater Trans A 51, 3030–3041 (2020). https://doi.org/10.1007/s11661-020-05730-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05730-3

Navigation