Skip to main content
Log in

Manipulation of the Stacking Fault Energy of a Medium-Mn Steel Through Temperature and Hierarchical Compositional Variation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Neutron diffraction was used to interrogate the temperature-dependent deformation response of a medium-Mn steel. Through in situ measurements of phase content, the deformation response at 298 K was found to consist of phase transformation of the γ-austenite to ε- and α-martensite (TRIP). When strained above 423 K, twinning-induced plasticity (TWIP) became the dominant deformation behavior. At intermediate temperatures, mixed-mode deformation was observed. The various deformation responses are explained relative to the calculated temperature-dependent stacking fault energy curve. For stacking fault energies ≤ 15 mJ/m2, phase transformation associated with stacking fault generation was observed. When the stacking fault energy was ≥ 22 mJ/m2, twinning was recorded. Between these values, a mixed-mode deformation was noted with both twins and ε-martensite being identified; the mixed-mode response is due to the chemical and microstructural inhomogeneity of the alloy. This investigation works to clarify the effect of temperature on medium-Mn stacking fault energy and the associated deformation responses within a single alloy class.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Frommeyer, U. Brux, and P. Neumann: ISJ Inter., 2003, vol. 43, pp. 438–46.

    CAS  Google Scholar 

  2. L. Remy and A. Pineau: Mater. Sci. Eng., 1976, vol. 26, pp. 123–32. https://doi.org/10.1016/0025-5416(76)90234-2.

    Article  CAS  Google Scholar 

  3. S. Allain, J.P. Chateau, and O. Bouaziz: Mater. Sci. Eng., 2004, vol. 387, pp. 143–47.

    Article  Google Scholar 

  4. T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim: Acta Mater., 2010, vol. 58, pp. 3173–86.

    Article  CAS  Google Scholar 

  5. D.M. Field, J. Qing, and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4615–32. https://doi.org/10.1007/s11661-018-4798-6.

    Article  CAS  Google Scholar 

  6. G.B. Olson and M. Cohen: Met. Trans. A, 1976, vol. 7, pp. 1897–904.

    Google Scholar 

  7. D.J. Magagnosc, D.M. Field, C.S. Meredith, K. An, T.R. Walter, K.R. Limmer, and J.T. Lloyd: Acta Mater., 2022, vol. 231, p. 117864. https://doi.org/10.1016/j.actamat.2022.117864.

    Article  CAS  Google Scholar 

  8. R.P. Reed and R.E. Schramm: J. Appl. Phys., 1974, vol. 45, pp. 4705–11.

    Article  CAS  Google Scholar 

  9. D.M. Field and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1152–66.

    Article  Google Scholar 

  10. M.C. McGrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4634–43.

    Article  Google Scholar 

  11. D.M. Field, L.G. Garza-Martinez, and D.C. Van Aken: Met Trans A, 2020, vol. 51, pp. 4427–33.

    Article  CAS  Google Scholar 

  12. S.T. Pisarik, D.C. Van Aken, K. Limmer, and J.E. Medvedeva: AISTech 2014 Proc., 2014, vol. III, pp. 3013–23.

    Google Scholar 

  13. D.C. Van Aken, S.T. Pisarik, and M.C. McGrath: in: Proceedings of the International Symposium on New Developments in Advanced High-Strength Steels (Vail, Colorado, 2013), pp. 119–29.

  14. D.M. Field and D.C. Van Aken: Met. Trans. A, 2016, vol. 47A, pp. 1912–17.

    Article  Google Scholar 

  15. Y. Ma, W. Song, and W. Bleck: Materials, 2017, vol. 10, p. 1129.

    Article  Google Scholar 

  16. B. Neding, Y. Tian, J.Y. Peter Ko, and P. Hedström: Mater. Sci. Eng. A, 2022, vol. 832, p. 143403.

    Article  Google Scholar 

  17. B. Neding, O.I. Gorbatov, J.-C. Tseng, and P. Hedström: Metall. Trans. A, 2021, vol. 52, pp. 5357–66.

    Article  CAS  Google Scholar 

  18. A. Arabi-Hashemi, E. Polatidis, M. Smid, T. Panzer, and C. Leinenbach: Mat. Sci. Eng. A, 2020, vol. 782, p. 139261.

    Article  CAS  Google Scholar 

  19. Y. Tian, S. Lin, J.Y. Peter Ko, U. Lienert, A. Borgenstam, and P. Hedström: Mater. Sci. Eng. A, 2018, vol. 734, pp. 281–90.

    Article  CAS  Google Scholar 

  20. O. Muransky, P. Sittner, J. Zrink, and E.C. Oliver: Acta Mater., 2008, vol. 56, pp. 3367–79.

    Article  CAS  Google Scholar 

  21. P. Hou, Y. Li, W. Zhang, D. Chae, J.-S. Park, Y. Ren, Y. Gao, et al.: Materialia, 2021, vol. 18, p. 101162.

    Article  CAS  Google Scholar 

  22. S.T. Pisarik and D.C. Van Aken: Metall. Trans. A, 2015, vol. 47, pp. 1009–18.

    Article  Google Scholar 

  23. J.T. Lloyd, D.M. Field, and K.R. Limmer: Mater. Design, 2020, https://doi.org/10.1016/j.matdes.2020.108878.

    Article  Google Scholar 

  24. D.M. Field, D.S. Baker, and D.C. Van Aken: Metall. Mater. Trans. A, 2017, vol. 48, pp. 2150–63.

    Article  CAS  Google Scholar 

  25. F. Bachmann, R. Hielscher, and H. Schaeben: Solid State Phenom., 2010, vol. 160, pp. 63–8.

    Article  CAS  Google Scholar 

  26. D.J. Magagnosc, D.M. Field, C.S. Meredith, T.R. Walter, K.R. Limmer, and J.T. Lloyd: Mater. Sci. Eng. A, 2021, vol. 799, p. 140252. https://doi.org/10.1016/j.msea.2020.140252.

    Article  CAS  Google Scholar 

  27. K. An, Y. Chen, and A.D. Stoica: MRS Bull., 2019, vol. 44, pp. 878–85.

    Article  Google Scholar 

  28. S. Calder, K. An, R. Boehler, C.R. Dela Cruz, M.D. Frontzek, M. Guthrie, B. Haberl, A. Huq, S.A.J. Kimber, J. Liu, J.J. Molaison, J. Neuefeind, K. Page, A.M. Dos Santos, K.M. Taddei, C. Tulk, and M.G. Tucker: Rev. Sci. Instrum., 2018, vol. 89, p. 092701.

    Article  CAS  Google Scholar 

  29. D. Yu, L. Huang, Y. Chen, P. Komolwit, and K. An: JOM, 2018, vol. 70, pp. 1576–615.

    Article  CAS  Google Scholar 

  30. B.H. Toby: J. Appl. Crystallogr., 2001, vol. 34, pp. 210–3.

    Article  CAS  Google Scholar 

  31. K. An: ORNL Report No. ORNL-TM-2012-621 (2012).

  32. S.T. Pisarik and D.C. Van Aken: Metall. Trans. A, 2014, vol. 45, pp. 3173–8.

    Article  CAS  Google Scholar 

  33. S. Shin, M. Kwon, W. Cho, I.S. Suh, and B.C. De Cooman: Mater. Sci. Eng., 2017, vol. 683, pp. 187–948.

    Article  CAS  Google Scholar 

  34. A. Creuziger, T. Phan, and D. Pagan: J. Appl. Crystallogr., 2021, vol. 54, pp. 1480–9.

    Article  CAS  Google Scholar 

  35. A. Creuziger and T. Gnäupel-Herold: IOP Conf. Ser.: Mater. Sci. Eng., 2015, https://doi.org/10.1088/1757-899X/82/1/012066.

    Article  Google Scholar 

  36. M.R. Cox, A. Creuziger, and K.O. Findley: Metall. Trans. A, 2023, vol. 54, pp. 823–37. https://doi.org/10.1007/s11661-022-06931-8.

    Article  CAS  Google Scholar 

  37. B.E. Warren: X-ray diffraction, Dover Publications, New York, 2014.

    Google Scholar 

  38. D.M. Field, D.J. Magagnosc, B.C. Hornbuckle, J.T. Lloyd, and K.R. Limmer: Metall. Mater. Trans. A, 2022, https://doi.org/10.1007/s11661-022-06683-5.

    Article  Google Scholar 

  39. V.A Athavale, T. Yaniak, M. Xu, and D.C. Van Aken: in: AFS Proceedings of the 123rd Metal Casting Congress, Milwaukee, WI, 25–27 April 2019, pp. 17–58.

  40. D.M. Field, J.S. Montgomery, K.R. Limmer, and K.C. Cho: Metall. Trans. A, 2020, vol. 51, pp. 1038–43.

    Article  CAS  Google Scholar 

  41. D.M. Field, S.R. Cluff, K.R. Limmer, J.S. Monthomery, D.J. Magagnosc, and K.C. Cho: Metals, 2021, vol. 11, p. 723. https://doi.org/10.3390/met11050723.

    Article  CAS  Google Scholar 

  42. B.C. De Cooman, Y. Estrin, and S.K. Kim: Acta Mater., 2018, vol. 142, pp. 283–362.

    Article  Google Scholar 

Download references

Acknowledgments

A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by Oak Ridge National Laboratory. The authors thank Matthew Frost and Yan Chen for their assistance executing the experiments and analyzing the data. The authors also wish to acknowledge Dr. Timothy Walter and Dr. Christopher Meredith for their assistance in the execution of the tensile testing presented in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Field.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Field, D.M., Magagnosc, D.J., Hornbuckle, B.C. et al. Manipulation of the Stacking Fault Energy of a Medium-Mn Steel Through Temperature and Hierarchical Compositional Variation. Metall Mater Trans A 55, 161–172 (2024). https://doi.org/10.1007/s11661-023-07239-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07239-x

Navigation