Skip to main content
Log in

Thermodynamic Driving Force of the γ → ε Transformation and Resulting MS Temperature in High-Mn Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two-stage transformation-induced plasticity (TRIP) behavior characterized by the martensitic transformations, γ → ε → α′, has produced exceptional tensile strengths and work hardening rates in Fe-14 wt pct Mn alloys containing Al and Si. A regular solution model has been developed to accurately calculate ΔG γ  ε for a given TRIP alloy and the calculated driving force is used to determine the M εS temperature. The regular solution model developed here predicted driving forces that corresponded well with reported microstructures and behavior of seven FeMnAlSiC steels from literature when considered in conjunction with nucleating defect critical size and material process history. The role of available nucleating defects of critical size, n*, has been linked to the stacking fault energy necessary to observe the γ → ε transformation and the M εS temperature. The regular solution model provided excellent correlation between calculated M εS temperatures and those measured experimentally in 89 alloys from literature and suggested n* = 4 is the critical size of a nucleating defect in annealed microstructures. Factors affecting the γ → ε transformation and the M εS temperature have been identified as prior austenite grain size, dislocation substructure due to prior deformation, and solute segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. [1] J. Fekete and J. Hall: NIST Internal Report 6668, National Institute of Standards and Technology, Washington, DC, May 2012.

    Google Scholar 

  2. [2] M.C. McGrath, D.C. Van Aken, N.I. Medvedeva, and J.E. Medvedeva: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4634-43.

    Article  Google Scholar 

  3. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann: J.Phys. IV France, 1997, vol. 7, pp. 383-88.

    Article  Google Scholar 

  4. D.C. Van Aken, S.T. Pisarik, and M.C. McGrath: Proc. Intl. Symp. Develop. AHSS, Vail, Colorado, 2013, pp. 119–29.

  5. [5] L. Bracke, L. Kestens, and J. Penning: Scripta Mater., 2007, vol. 57, pp. 385–88.

    Article  Google Scholar 

  6. S.T. Pisarik, D.C. Van Aken, K. Limmer, and J. Medvedeva: Proc. of AISTech 2014, 2014, pp. 3013–23.

  7. [7] S. Kibey, J. Liu, M. Curtis, D. Johnson and H. Sehitoglu: Acta Mater., 2006, vol. 54, pp. 2991-3001.

    Article  Google Scholar 

  8. [8] G. Olson and M. Cohen: Metall. Mater. Trans. A, 1976, vol. 7, pp. 1897-1904.

    Google Scholar 

  9. W.S. Yang and C.M Wan (1990) J. Mater. Sci. 25, pp. 1821-23.

    Article  Google Scholar 

  10. [10] P.J. Ferreira and P. Mullner: Acta Mater., 1998, vol. 46, pp. 4479-84.

    Article  Google Scholar 

  11. [11] J. Talonen and H. Hänninen: Acta Mater., 2007, vol. 55, pp. 6108-18.

    Article  Google Scholar 

  12. [12] H. Fujita and S. Ueda: Acta Metall., 1972, vol. 20, pp. 759-67.

    Article  Google Scholar 

  13. [13] L. Kaufman and M. Cohen: Progr. Metal. Phys., 1958, vol. 7, pp. 165-246.

    Article  Google Scholar 

  14. [14] A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng. A, 2008, vols. 483-484, pp. 184-87.

    Article  Google Scholar 

  15. [15] J.H. Jun and C.S. Choi: Mater. Sci. Eng. A, 1998, vol. 257, pp. 535-56.

    Article  Google Scholar 

  16. [16] H.S. Yang, J.H. Jang, H.K.D.H. Bhadeshia, and D.W. Suh: CALPHAD, 2012, vol. 36, pp. 16-22.

    Article  Google Scholar 

  17. [17] J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359-71.

    Article  Google Scholar 

  18. [18] Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31, pp. 355-60.

    Article  Google Scholar 

  19. [19] S. Allain, J.P. Chateau, O. Bouaziz, S. Migot and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387-389, pp.158-62.

    Article  Google Scholar 

  20. [20] A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317-425.

    Article  Google Scholar 

  21. [21] L. Kaufman: CALPHAD, 1977, vol. 1, pp. 7-89.

    Article  Google Scholar 

  22. [22] B. Sundman, B. Jansson, and J.O. Anderson: CALPHAD, 1985, vol. 9, pp. 153-190.

    Article  Google Scholar 

  23. [23] K. Ishida and T. Nishizawa: Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 225-231.

    Article  Google Scholar 

  24. [24] P.H. Adler, G.B. Olson, and W.S. Owen: Metall. Trans. A, 1986, vol. 16A, pp. 1725-37.

    Article  Google Scholar 

  25. ASTM E 8/E 8M-08, Standard Test Methods for Tension Testing of Metallic Materials.

  26. [26] A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock: Scripta Mater., 2004, vol. 50, pp. 1445-49.

    Article  Google Scholar 

  27. [27] G. Frommeyer, U. Brux, and P. Neumann: ISIJ Int., 2003, vol. 3, pp. 438-46.

    Article  Google Scholar 

  28. E.Yang, H. Zurob, and J. McDermid: Proc. of MS&T’10, 2010, pp. 1914–25.

  29. [29] T.S. Byun: Acta Mater., 2003, vol. 51, pp. 3063-71.

    Article  Google Scholar 

  30. [30] X.H. Min, T. Sawaguchi, K. Ogawa, T. Maruyama, F.X. Yin, and K. Tsuzaki: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5251-58.

    Article  Google Scholar 

  31. K. Ogawa and S. Kajiwara (1993) Mater. Trans. JIM 34:1169-76.

    Article  Google Scholar 

  32. [32] N. Igata, N. Urahashi, M. Sasaki, and Y. Kogo: J. Alloys Compd., 2003, vol. 355, pp. 85-89.

    Article  Google Scholar 

  33. [33] H. Okada, H. Sahashi, I.S. Kim, C.Y. Kang, N. Igata, K. Miyahara: Mater. Sci. Eng. A, 2004, vol. 370, pp. 519-23.

    Article  Google Scholar 

  34. K.R. Limmer, D.C. Van Aken, and J.E Medvedeva: Proc. of AISTech 2014, 2014.

  35. [35] Q.X. Dai, X.N. Cheng, Y.T. Zhao, X.M. Luo, and Z.Z. Yuan: Mater. Charact., 2004, vol. 52, pp. 349-54.

    Article  Google Scholar 

  36. [36] S.H. Baik, J.C. Kim, K.K. Jee, M.C. Shin, and C.S. Choi: ISIJ Int., 1997, vol. 37, pp. 519-22.

    Article  Google Scholar 

  37. [37] Y. Tomota, M. Stum, and J.W. Morris Jr.: Metall. Trans. A, 1986, vol. 17, pp. 537-47.

    Article  Google Scholar 

  38. [38] Y.K. Lee, J.H. Jun and C.S. Choi: Scripta Mater., 1996, vol. 35, pp. 825-30.

    Article  Google Scholar 

  39. [39] Y.K. Lee, J.H. Jun and C.S. Choi: ISIJ Int., 1997, vol. 37, pp. 1023-30.

    Article  Google Scholar 

  40. [40] J.H. Jun and C.S. Choi: Scripta Mater., 1998, vol. 38, pp. 543-49.

    Article  Google Scholar 

  41. [41] J.H. Jun and C.S. Choi: Mater. Sci. Eng. A, 1998, vol. 252, pp. 133-38.

    Article  Google Scholar 

  42. [42] S. Cotes, M. Sade and A.F. Guillermet: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1957-69.

    Article  Google Scholar 

  43. [43] H. Umebayashi and Y. Ishikawa: J. Phys. Soc. Jpn, 1966, vol. 21, pp. 1281-94.

    Article  Google Scholar 

  44. S. Takaki, H. Nakatsu and T. Tokunaga (1993) Mater. Trans. JIM, 34: 489-95.

    Article  Google Scholar 

  45. [45] S. Cotes, A.F. Guillermet and M. Sade: J. Alloys Compd., 1998, vol. 278, pp. 231-38.

    Article  Google Scholar 

  46. [46] I.Y. Georgiyeva, N.A. Sorokina and V.I. Gal’tsova: Phys. Met. Metallogr., 1981, vol. 49, pp. 178-81.

    Google Scholar 

  47. [47] A.P. Gulyaev, T.F. Volynova and I.Y. Georgiyeva: Met. Sci. Heat Treat., 1978, vol. 20, pp. 179-82.

    Google Scholar 

  48. [48] A.R. Troiano and F.T. McGuire: Trans. ASM, 1943, vol. 31, pp. 340-64.

    Google Scholar 

  49. [49] I.N. Bogachev and L.S. Malinov: Phys. Met. Metallogr., 1962, vol. 14, pp. 828-33.

    Google Scholar 

  50. [50] I.N. Bogachev, V.F. Yegolayev, G.Y. Zvigintseva and L.V. Zhuravel: Phys. Met. Metallogr., 1968, vol. 28, pp. 885-88.

    Google Scholar 

  51. [51] K. Tsuzaki, S. Fukasaku, Y. Tomota and T. Maki: Trans. JIM, 1991, vol. 32, pp. 222-28.

    Article  Google Scholar 

  52. [52] M. Fujita and I. Uchiyama: Tetsu-to-Hagane, 1974, vol. 60, pp. 525-39.

    Google Scholar 

  53. [53] P. Donner, E. Hornbogen and M. Sade: J. Mater. Sci., 1989, vol. 8, pp. 37-40.

    Google Scholar 

  54. A. Baruj, S. Cotes, M. Sade and A.F. Guillermet: J. Phys. Colloq., 1995, vol. 5, pp. 373–378.

    Google Scholar 

  55. M. Acet, T. Schneider, B. Gehrmann and E.F. Wassermann: J. Phys. Colloq., 1995, vol. 5, pp. 379–84.

    Google Scholar 

  56. K.K. Jee, W.Y. Jang, S.H. Baik, M.C. Shin and C.S. Choi: J. Phys. Colloq., 1995, vol. 5, pp. 385–90.

    Google Scholar 

  57. Y. Tomota and K. Yamaguchi: J. Phys. Colloq., 1995, vol. 5, pp. 421–26.

    Google Scholar 

  58. [58] Y.S. Zhang, X. Lu, X. Tian and Z. Qin: Mater. Sci. Eng. A, 2002, vol. 334, pp. 19-27.

    Article  Google Scholar 

  59. [59] J. Nakano: Sci. Technol. Adv. Mater., 2013, vol. 14, 014207.

    Article  Google Scholar 

  60. [60] M. Palumbo: CALPHAD, 2008, vol. 32, pp. 693-709.

    Article  Google Scholar 

  61. [61] X. Tian and Y. Zhang: Mat. Sci. Eng. A., 2009, vol. 516, pp. 78-83.

    Article  Google Scholar 

  62. [62] M. Koyama, T. Sawaguchi, and K. Tsuzaki: Mat. Sci. Eng. A., 2011, vol. 528, pp. 2882-86.

    Article  Google Scholar 

  63. P. Y. Volosevich, V.N. Gridnev and Y.N Petrov (1975) Phys. Met. Metallogr. 40:554-59.

    Google Scholar 

  64. C.W Sinclair, W.J. Poole and Y. Brechet: Scripta Mater., 2006, vol. 55, pp. 739-42.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Peaslee Steel Manufacturing Research Center (PSMRC). Companies directly involved in this work include AK Steel, ArcelorMittal, Nucor Steel, and US Steel. The authors gratefully acknowledge Jerry Arnold of AK Steel Corporation for his assistance with Thermo-calc calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Van Aken.

Additional information

Manuscript submitted August 7, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pisarik, S.T., Van Aken, D.C. Thermodynamic Driving Force of the γ → ε Transformation and Resulting MS Temperature in High-Mn Steels. Metall Mater Trans A 47, 1009–1018 (2016). https://doi.org/10.1007/s11661-015-3265-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3265-x

Keywords

Navigation