Skip to main content
Log in

Stacking Fault Energy of Austenite Phase in Medium Manganese Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The stacking fault energy (SFE) of the austenite phase in a medium manganese steel (Fe-4.75Mn-0.18C-0.8Si-0.4Al wt pct) has been determined by X-ray diffraction (XRD) using the modified Reed–Schramm formalism. SFE determination involved XRD line broadening analysis of mean square strain due to dislocations and calculation of stacking fault probability (SFP) from the analysis of diffraction peak shift due to both stacking faults and residual stress in the deformed austenite phase. Determination of SFP revealed a significant change in the separation between two neighboring peak reflections (111 and 200) due to compressive residual stress as compared to the corresponding change in peak separation due to stacking faults. Obtained SFE values were found to vary from 9 to 20 mJ m−2 for the deformed specimens, annealed at an intercritical temperature for different durations for austenite stabilization prior to deformation. SFP determination neglecting residual stress led to a significant decrease in the SFE value of the austenite phase. Dislocations in deformed austenite phase were predominantly \( \langle 110\rangle \{ 111\} \) edge type, and dislocation density was of the order of 1015 m−2. Both XRD and transmission electron microscopy observations suggested twinning-induced plasticity as the prevalent mode of deformation of austenite phase having an SFE value of ~ 20 mJ m−2, whereas transformation-induced plasticity was found to be the major deformation mode for the specimen having an SFE value of ~ 9 mJ m−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1 Y.-K. Lee and J. Han: Mater. Sci. Technol., 2015, vol. 31, pp. 843–56.

    CAS  Google Scholar 

  2. 2 M. Zhang, L. Li, J. Ding, Q. Wu, Y.D. Wang, J. Almer, F. Guo, and Y. Ren: Acta Mater., 2017, vol. 141, pp. 294–303.

    CAS  Google Scholar 

  3. 3 B. Hu, H. Luo, F. Yang, and H. Dong: J. Mater. Sci. Technol., 2017, vol. 33, pp. 1457–64.

    Google Scholar 

  4. 4 R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905–12.

    CAS  Google Scholar 

  5. 5 H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, and H. Dong: Acta Mater., 2011, vol. 59, pp. 4002–14.

    CAS  Google Scholar 

  6. 6 P.J. Gibbs, E.D.E. Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Met. Mater. Trans. A., 2011, vol. 42, pp. 3691–702.

    Google Scholar 

  7. 7 G.K. Bansal, D.A. Madhukar, A.K. Chandan, K. Ashok, G.K. Mandal, and V.C. Srivastava: Mater. Sci. Eng. A, 2018, vol. 733, pp. 246–56.

    CAS  Google Scholar 

  8. 8 S. Lee and B.C. De Cooman: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5018–24.

    Google Scholar 

  9. 9 W. Cao, C. Wang, C. Wang, J. Shi, M. Wang, H. Dong, and Y. Weng: Sci. China Technol. Sci., 2012, vol. 55, pp. 1814–22.

    CAS  Google Scholar 

  10. 10 J.I. Kim, C.K. Syn, and J.W. Morris: Metall. Trans. A, 1983, vol. 14, pp. 93–103.

    CAS  Google Scholar 

  11. 11 A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck: Metall. Mater. Trans. A, 2009, vol. 40, pp. 3076–90.

    CAS  Google Scholar 

  12. 12 O. Matsumura, Y. Sakuma, and H. Takechi: Scr. Metall., 1987, vol. 21, pp. 1301–10.

    CAS  Google Scholar 

  13. 13 S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765–78.

    CAS  Google Scholar 

  14. 14 C. Herrera, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 4653–64.

    Article  CAS  Google Scholar 

  15. 15 O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Google Scholar 

  16. 16 G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438–46.

    CAS  Google Scholar 

  17. 17 B.C. De Cooman: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 285–303.

    Google Scholar 

  18. 18 V. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–9.

    CAS  Google Scholar 

  19. 19 I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.

    CAS  Google Scholar 

  20. 20 O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14, pp. 1213–7.

    Google Scholar 

  21. 21 E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1999, vol. 30, pp. 1223–33.

    CAS  Google Scholar 

  22. 22 S. Curtze and V. Kuokkala: Acta Mater., 2010, vol. 58, pp. 5129–41.

    CAS  Google Scholar 

  23. 23 S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 158–62.

    Google Scholar 

  24. 24 Y-K Lee: Scripta Mater., 2012, vol. 66, pp. 1002–6.

    CAS  Google Scholar 

  25. 25 K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868–77.

    CAS  Google Scholar 

  26. 26 B.C. De Cooman, O. Kwon and K.-G. Chin: Mater. Sci. and Tech., 2012, vol. 28, pp. 513-27.

    Google Scholar 

  27. 27 R.P. Reed and R.E. Schramm: J. Appl. Phys., 1974, vol. 45, pp. 4705–11.

    CAS  Google Scholar 

  28. 28 R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.

    CAS  Google Scholar 

  29. Dey SN, Chatterjee P, Sen Gupta SP (2005) Acta Mater 53:4635–42

    CAS  Google Scholar 

  30. 30 C.C. Bampton, I.P. Jones, and M.H. Loretto: Acta Metall., 1978, vol. 26, pp. 39–51.

    CAS  Google Scholar 

  31. Mahato B, Shee SK, Sahu T, Ghosh Chowdhury S, Sahu P, Porter DA, Karjalainen LP (2015) Acta Mater 86:69–79

    CAS  Google Scholar 

  32. 32 D.T. Pierce, J.A. Jiménez, J. Bentley, D. Raabe, C. Oskay, and J.E. Wittig: Acta Mater., 2014, vol. 68, pp. 238–53.

    CAS  Google Scholar 

  33. 33 L. Remy: Acta Metall., 1977, vol. 25, pp. 173–9.

    CAS  Google Scholar 

  34. Lee SJ, Jung YS, Il Baik S, Kim YW, Kang M, Woo W, Lee YK (2014) Scripta Mater 92:23–26

    CAS  Google Scholar 

  35. 35 L. Balogh, G. Ribárik, and T. Ungár: J. Appl. Phys., 2006, vol. 100, pp. 023512-1–10.

    Google Scholar 

  36. Warren BE (1990) X-Ray Diffraction. Dover Publications, Mineola

    Google Scholar 

  37. 37 B.E. Warren and E.P. Warekois: Acta Metall., 1955, vol. 3, pp. 473–9.

    CAS  Google Scholar 

  38. 38 J.W.L. Pang, T.M. Holden and T.E. Mason: Acta Mater., 1998, vol. 46, No.5, pp.1503-18.

    CAS  Google Scholar 

  39. Noyan IC, Cohen JB (1987) Residual Stress: Measurement by Diffraction and Interpretation, 1st edn. Springer, New York

    Google Scholar 

  40. 40 K. Van Acker, J. Root, P. Van Houtte and E. Aernoudt: Acta Mater., 1996, vol. 44, No. 10, pp. 4039-49.

    Google Scholar 

  41. 41 P. Van Houtte and L. De Buyser: Acta metall. Mater., 1993, vol. 41, No. 2, pp. 323-36.

    Google Scholar 

  42. 42 P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 366–75.

    CAS  Google Scholar 

  43. 43 Y. Tomota, H. Tokuda, Y. Adachi, and M. Wakita: Acta Mater., 2004, vol. 52, pp. 5737–45.

    CAS  Google Scholar 

  44. 44 S. Morooka, Y. Tomota, and T. Kamiyama: ISIJ Int., 2008, vol. 48, pp. 525–30.

    CAS  Google Scholar 

  45. 45 T. Ungár, I. Dragomir, Á. Révész, and A. Borbély: J. Appl. Crystallogr., 1999, vol. 32, pp. 992–1002.

    Google Scholar 

  46. 46 T. Ungár and A. Borbély: Appl. Phys. Lett., 1996, vol. 69, pp. 3173–5.

    Google Scholar 

  47. T. Ungár: Proc. Denver X-ray Conf. 1996, “Advances X-ray Anal”.

  48. 48 T. Ungár and G. Tichy: Phys. Status Solidi, 1999, vol. 171, pp. 425–34.

    Google Scholar 

  49. 49 X. Tian, H. Li, and Y. Zhang: J Mater Sci, 2008, vol. 43, pp. 6214–22.

    CAS  Google Scholar 

  50. 50 M. Kang, W. Woo, Y.-K. Lee, and B.-S. Seong: Mater. Lett., 2012, vol. 76, pp. 93–5.

    CAS  Google Scholar 

  51. 51 J.E. Jin and Y.K. Lee: Acta Mater., 2012, vol. 60, pp. 1680–8.

    CAS  Google Scholar 

  52. 52 J.S. Jeong, W. Woo, K.H. Oh, S.K. Kwon, and Y.M. Koo: Acta Mater., 2012, vol. 60, pp. 2290–9.

    CAS  Google Scholar 

  53. 53 G. Ribárik, J. Gubicza, and T. Ungár: Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 343–7.

    Google Scholar 

  54. 54 S. Lee, W. Woo, and B.C. De Cooman: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2125–40.

    Google Scholar 

  55. 55 R. Adler, H. Otte, and C. Wagner: Metall. Trans., 1970, vol. 1, pp. 2375–82.

    Google Scholar 

  56. 56 D. Rafaja, C. Krbetschek, C. Ullrich, and S. Martin: J. Appl. Crystallogr., 2014, vol. 47, pp. 936–47.

    CAS  Google Scholar 

  57. 57 H.M. Otte and D.O. Welch: Philos. Mag., 1964, vol. 9, pp. 299–313.

    CAS  Google Scholar 

  58. Arlazarov A, Gouné M, Bouaziz O, Hazotte A, Petitgand G, Barges P: Mater. Sci. Eng. A, 2012, vol. 542, pp. 31–39.

    CAS  Google Scholar 

  59. 59 J.-M. Jang, S.-J. Kim, N.H. Kang, K.-M. Cho, and D.-W. Suh: Met. Mater. Int., 2009, vol. 15, pp. 909–16.

    CAS  Google Scholar 

  60. 60 G. Ribarik, T. Ungar and J. Gubicza: J. Appl. Cryst., 2001, vol. 34, pp. 669-76.

    CAS  Google Scholar 

  61. 61 A. Borbély, J. Dragomir-Cernatescu, G. Ribárik, and T. Ungár: J. Appl. Crystallogr., 2003, vol. 36, pp. 160–2.

    Google Scholar 

  62. PROFIT: Profile fitting software. The Netherlands: PANAlytical (formerly Philips), PANAlytical, 1996.

    Google Scholar 

  63. 63 H.M. Rietveld: J. Appl. Cryst., 1969, vol. 2, pp. 65–71.

    CAS  Google Scholar 

  64. L. Lutterotti, S. Matthies, and H.-R. Wenk: Proc. Twelfth Int. Conf. Textures Mater., 1999, vol. 1, pp. 1599–1604.

  65. 65 G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22–31.

    CAS  Google Scholar 

  66. 66 L.G. Telser, J. Aitchison, and J.A.C. Brown: J. Farm Econ., 1959, vol. 41, p. 161.

    Google Scholar 

  67. 67 V.G. Kurdjumow and G. Sachs: Zeitschrift für Phys., 1930, vol. 64, pp. 325–43.

    Google Scholar 

  68. 68 C. Wang, J. Shi, C.Y. Wang, W.J. Hui, and M.Q. Wang: ISIJ Int., 2011, vol. 51, pp. 651–6.

    CAS  Google Scholar 

  69. 69 R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy: Acta Mater., 2013, vol. 61, pp. 697–707.

    CAS  Google Scholar 

  70. Wang C, Cao W, Han Y, Wang C, Xiang Huang C, Dong H (2015) J Iron Steel Res Int 22:42–47

    CAS  Google Scholar 

  71. 71 H. Huang, O. Matsumura, and T. Furukawa: Mater. Sci. Technol., 1994, vol. 10, pp. 621–6.

    CAS  Google Scholar 

  72. 72 H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong: Mater. Sci. Eng. A, 2012, vol. 532, pp. 435–42.

    CAS  Google Scholar 

  73. 73 J. Cohen: Local Atomic Arrangements Studied by X-Ray Diffraction, Gordon and Breach, New York, 1966.

    Google Scholar 

  74. 74 J. Chakraborty, T. Maity, K. Kumar, and S. Mukherjee: Adv. Mater. Res., 2014, vol. 996, pp. 855–9.

    Google Scholar 

  75. 75 U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen and E.J. Mittemeijer: J. Appl. Crystallography, 2005, vol. 38, pp. 1-29.

    Google Scholar 

  76. W. Serruys: Ph.D. Thesis, Katholieke Univ. Leuven, 1988.

  77. 77 M. Eckhardt and H. Ruppersberg: Z.Metallk. 1988, vol. 79, pp. 662-66.

    CAS  Google Scholar 

  78. 78 I.C. Noyan and J.B. Cohen: Adv. X-ray Analysis, 1983, vol. 27, p. 129.

    Google Scholar 

  79. Gubicza J (2014) X-Ray Line Profile Analysis in Materials Science. IGI Global, Hershey

    Google Scholar 

  80. 80 K. Jeong, J.E. Jin, Y.S. Jung, S. Kang, and Y.K. Lee: Acta Mater., 2013, vol. 61, pp. 3399–410.

    CAS  Google Scholar 

  81. 81 H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.

    CAS  Google Scholar 

  82. 82 S. Lee, K. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2015, vol. 46, pp. 2356–63.

    Google Scholar 

  83. 83 P.H. Adler, G.B. Olson, and W.S. Owen: Metall. Mater. Trans. A, 1986, vol. 17, pp. 1725–37.

    CAS  Google Scholar 

Download references

Acknowledgments

Tata Steel Ltd. is gratefully acknowledged for the full financial support to carry out the present work. The authors are indebted to Dr. Jeno Gubicza, Dr. Mainak Ghosh and Dr. Partha Chatterjee for many useful discussions related to the CMWP program and various microstructural aspects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 13, 2019.

Appendix

Appendix

See Figures A1, A2 and A3.

Fig. A1
figure 12

Positive \( d_{\phi \psi }^{{\{ 111\} }} {-} \sin^{2} \psi \) plots corresponding to the 111 reflection of the austenite phase in specimens deformed to 3 pct strain level for rotation angle: φ = 0 deg, φ = 45 deg, and φ = 90 deg

Fig. A2
figure 13

\( d_{\phi \psi }^{{\{ 111\} }} {-} \sin^{2} \psi \) plots corresponding to the 111 reflection of the austenite phase in specimens deformed to 3 pct strain level for rotation angle: (a) φ = 0 deg, (b) φ = 45 deg, and (c) φ = 90 deg

Fig. A3
figure 14

Diffracted intensity as a function of sample tilt angle (ψ) for three different sample rotation angles (i.e., φ = 0, 45, and 90 deg)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandan, A.K., Mishra, G., Mahato, B. et al. Stacking Fault Energy of Austenite Phase in Medium Manganese Steel. Metall Mater Trans A 50, 4851–4866 (2019). https://doi.org/10.1007/s11661-019-05367-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05367-x

Navigation