Skip to main content
Log in

Near-Surface Layer Perforations as Precursors to Fracture in Accumulative Roll Bonding of a Multilayered Metal Composite

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We use micro-computed tomography (µ-CT) to characterize the sizes, shapes, and locations of layer perforation (LP) defects in laminates of copper (Cu) and tantalum (Ta) processed by accumulative roll bonding (ARB). One—termed Cu/Ta—was processed from an initial stacking of seven alternating Cu and Ta sheets, with the exterior sheets being Cu. In the other—termed Ta/Cu—the exterior sheets are Ta. Cu/Ta remained intact during processing and exhibits an approximately uniform spatial distribution of LPs. By contrast, Ta/Cu fractured by longitudinal splitting. LPs in this latter sample are concentrated near the sample surfaces. Moreover, their density increases with decreasing distance to the fracture surface. These findings show that materials undergoing ARB may remain intact, despite profuse formation of LPs, provided that the LPs are uniformly distributed. However, a non-uniform distribution of LPs is correlated with longitudinal splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  2. A.R. Eivani, A. Shojaei, M.T. Salehi, H.R. Jafarian, and N. Park: J. Market. Res., 2021, vol. 10, pp. 291–305.

    CAS  Google Scholar 

  3. R. Jamaati and M.R. Toroghinejad: Mater. Design 2010, vol. 31, pp. 4508–13.

  4. M.C. Chen, H.C. Hsieh, and W. Wu: J. Alloys Compds., 2006, vol. 416, pp. 169–72.

    Article  CAS  Google Scholar 

  5. T. Wang, H. Nie, Y. Mi, X. Hao, F. Yang, C. Chi, and W. Liang: J. Mater. Res., 2019, vol. 34, pp. 344–53.

    Article  CAS  Google Scholar 

  6. D. C. C. Magalhães, J. B. Rubert, O. M. Cintho, V. L. Sordi, and A. M. Kliauga: Frontiers in Materials 2020, vol. 7.

  7. M. Tayyebi and B. Eghbali: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 357–64.

    Article  CAS  Google Scholar 

  8. T. Hausöl, H.W. Höppel, and M. Göken: Materialwiss. Werkstofftech., 2012, vol. 43, pp. 334–39.

    Article  Google Scholar 

  9. T. Nizolek, N.A. Mara, I.J. Beyerlein, J.T. Avallone, J.E. Scott, and T.M. Pollock: Metallogr. Microstruct. Anal., 2014, vol. 3, pp. 470–76.

    Article  CAS  Google Scholar 

  10. C. Ding, Xu. Jie, D. Shan, B. Guo, and T.G. Langdon: Composite B, 2021, vol. 211, p. 108662.

    Article  CAS  Google Scholar 

  11. A. Misra, M.J. Demkowicz, X. Zhang, and R.G. Hoagland: JOM, 2007, vol. 59, pp. 62–65.

    Article  CAS  Google Scholar 

  12. Nathan A. Mara and Irene J. Beyerlein: In Special Section: Ultrafinegrained Materials; Guest Editors: Suveen N. Mathaudhu, Yuri Estrin, Zenji Horita, Enrique Lavernia, Xiao Zhou Liao, Lei Lu, Qiuming Wei, Gerhard Wilde, and Yun Tian Zhu, Kluwer Academic Publishers: 2014, pp 6497-516.

  13. Dinh Cuong Tran, Nicolas Tardif, and Ali Limam: International Journal of Solids and Structures 2015, vol. 69-70, pp. 343-49.

  14. J.T. Avallone, T.J. Nizolek, B.B. Bales, and T.M. Pollock: Acta Mater., 2019, vol. 176, pp. 189–98.

    Article  CAS  Google Scholar 

  15. C. Ding, Xu. Jie, X. Li, D. Shan, B. Guo, and T.G. Langdon: Adv. Eng. Mater., 2020, vol. 22, p. 1900702.

    Article  CAS  Google Scholar 

  16. L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, and T. Zhang: Acta Mater., 2016, vol. 110, pp. 341–51.

    Article  CAS  Google Scholar 

  17. D. Yang, P. Cizek, P. Hodgson, and C. Wen: Scr. Mater., 2010, vol. 62, pp. 321–24.

    Article  CAS  Google Scholar 

  18. C.W. Schmidt, M. Ruppert, H.W. Hoppel, F. Nachtrab, A. Dietrich, R. Hanke, and M. Goken: Adv. Eng. Mater., 2012, vol. 14, pp. 1009–017.

    Article  CAS  Google Scholar 

  19. H. Wu, G.H. Fan, M. Huang, L. Geng, X.P. Cui, R.C. Chen, and G.Y. Peng: Compos. Struct., 2017, vol. 163, pp. 123–28.

    Article  Google Scholar 

  20. K.M.M. Rahman, J. Szpunar, M.R. Toroghinejad, and G. Belev: J. Compos. Mater., 2019, vol. 53, pp. 1215–27.

    Article  CAS  Google Scholar 

  21. B. Dodd and P. Boddington: J. Mech. Work. Technol., 1980, vol. 3, pp. 239–52.

    Article  CAS  Google Scholar 

  22. Franz Dieter Fischer, Nikolaus Friedl, Andreas Noé, and Franz G. Rammerstorfer: steel research international 2005, vol. 76, pp. 327-35.

  23. I.W. Chen, E.J. Winn, and M. Menon: Mater. Sci. Eng. A, 2001, vol. 317, pp. 226–35.

    Article  Google Scholar 

  24. S.R. Chen and G.T. Gray: Metall. Mater. Trans. A, 1996, vol. 27, pp. 2994–3006.

    Article  Google Scholar 

  25. S. Nemat-Nasser and Y.L. Li: Acta Mater., 1998, vol. 46, pp. 565–77.

    Article  CAS  Google Scholar 

  26. M. Ardeljan, M. Knezevic, T. Nizolek, I.J. Beyerlein, N.A. Mara, and T.M. Pollock: Int. J. Plast., 2015, vol. 74, pp. 35–57.

    Article  CAS  Google Scholar 

  27. J.M. Lee, B.R. Lee, and S.B. Kang: Mater. Sci. Eng. A, 2005, vol. 406, pp. 95–101.

    Article  Google Scholar 

  28. M. Rahdari, M. Reihanian, and S.M.L. Baghal: Mater. Sci. Eng. A, 2018, vol. 738, pp. 98–110.

    Article  CAS  Google Scholar 

  29. N.V. Govindaraj, J.G. Frydendahl, and B. Holmedal: Mater. Des., 2013, vol. 52, pp. 905–15.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the US Department of Energy, National Nuclear Security Administration under Award No. DE-NA0003857. Neutron activation analysis was performed at Texas A&M University by B. Tomlin. ARB was performed at Los Alamos National Laboratory. The authors acknowledge the financial support of the University of Michigan College of Engineering and technical support from the Michigan Center for Materials Characterization. We thank C. Miller and C. Trujillo for helpful discussions regarding ARB.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Demkowicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenchenko, L.V., Mier, R.M., Muyanja, N.S. et al. Near-Surface Layer Perforations as Precursors to Fracture in Accumulative Roll Bonding of a Multilayered Metal Composite. Metall Mater Trans A 55, 63–72 (2024). https://doi.org/10.1007/s11661-023-07222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07222-6

Navigation