Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

In the present study, an Al/Cu/Mg multi-layered composite was produced by accumulative roll bonding (ARB) through seven passes, and its microstructure and mechanical properties were evaluated. The microstructure investigations show that plastic instability occurred in both the copper and magnesium reinforcements in the primary sandwich. In addition, a composite with a perfectly uniform distribution of copper and magnesium reinforcing layers was produced during the last pass. By increasing the number of ARB cycles, the microhardness of the layers including aluminum, copper, and magnesium was significantly increased. The ultimate tensile strength of the sandwich was enhanced continually and reached a maximum value of 355.5 MPa. This strength value was about 3.2, 2, and 2.1 times higher than the initial strength values for the aluminum, copper, and magnesium sheets, respectively. Investigation of tensile fracture surfaces during the ARB process indicated that the fracture mechanism changed to shear ductile at the seventh pass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.A. Marandi, A.H. Jabbari, M. Sedighi, and R. Hashemi, An Experimental, analytical, and numerical investigation of hydraulic bulge test in two-layer Al–Cu Sheets, J. Manuf. Sci. Eng., 139(2017), No. 3, article No. 031005.

  2. M.H. Vini, M. Sedighi, and M. Mondali, Mechanical properties, bond strength and microstructural evolution of AA1060/TiO2 composites fabricated by warm accumulative roll bonding (WARB), Int. J. Mater. Res., 108(2017), No. 1, p. 53.

    Article  Google Scholar 

  3. H. Rahimi, M. Sedighi, and R. Hashemi, Forming limit diagrams of fine-grained Al 5083 produced by equal channel angular rolling process, [in] Proceedings of the Institution of Mechanical Engineers, Part L. Journal of Materials: Design and Applications, 2016. https://doi.org/10.1177/14644207166 55560.

    Google Scholar 

  4. M. Alizadeh and M. Samiei, Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Mater. Des., 56(2014), p. 680.

    Article  Google Scholar 

  5. K. Wu, H. Chang, E. Maawad, W.M. Gan, H.G. Brokmeier, and M.Y. Zheng, Microstructure and mechanical properties of the Mg/Al laminated composite fabricated by accumulative roll bonding (ARB), Mater. Sci. Eng. A, 527(2010), No. 13-14, p. 3073.

    Article  Google Scholar 

  6. P. Asadi, G. Faraji, and M.K. Besharati, Producing of AZ91/SiC composite by friction stir processing (FSP), Int. J. Adv. Manuf. Technol., 51(2010), No. 1-4, p. 247.

    Article  Google Scholar 

  7. G. Faraji, O. Dastani, and S.A.A.A. Mousavi, Effect of process parameters on microstructure and micro-hardness of AZ91/Al2O3 surface composite produced by FSP, J. Mater. Eng. Perform., 20(2011), No. 9, p. 1583.

    Article  Google Scholar 

  8. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45(2000), No. 2, p. 103.

    Article  Google Scholar 

  9. R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci., 51(2006), No. 7, p. 881.

    Article  Google Scholar 

  10. R.Z. Valiev, N.A. Krasilnikov, and N.K. Tsenev, Plastic deformation of alloys with submicron-grained structure, Mater. Sci. Eng. A, 137(1991), p. 35.

    Article  Google Scholar 

  11. A. Azimi, S. Tutunchilar, G. Faraji, and M. B. Givi, Mechanical properties and microstructural evolution during multi-pass ECAR of Al 1100-O alloy, Mater. Des., 42(2012), p. 388.

    Article  Google Scholar 

  12. G. Sakai, Z. Horita, and T. G. Langdon, Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion, Mater. Sci. Eng. A, 393(2004), No. 1-2, p. 344.

    Article  Google Scholar 

  13. A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: Fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 6, p. 893.

    Article  Google Scholar 

  14. Z.J. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon, An investigation of grain boundaries in submicrometer-grained Al–Mg solid solution alloys using high-resolution electron microscopy, J. Mater. Res., 11(1996), No. 8, p. 1880.

    Article  Google Scholar 

  15. J.G. Yin, J. Lu, H.T. Ma, and P.S. Zhang, Nanostructural formation of fine grained aluminum alloy by severe plastic deformation at cryogenic temperature, J. Mater. Sci., 39(2004), No. 8, p. 2851.

    Article  Google Scholar 

  16. A. Babaei, G. Faraji, M.M. Mashhadi, and M. Hamdi, Repetitive forging (RF) using inclined punches as a new bulk severe plastic deformation method, Mater. Sci. Eng. A, 558(2012), p. 150.

    Article  Google Scholar 

  17. G. Faraji, K. Abrinia, M.M. Mashhadi, and M. Hamdi, An upper-bound analysis for frictionless TCAP process, Arch. Appl. Mech., 83(2013), No. 4, p. 483.

    Google Scholar 

  18. G. Faraji, M.M. Mashhadi, and H.S. Kim, Tubular channel angular pressing (TCAP) as a novel severe plastic deformation method for cylindrical tubes, Mater. Lett., 65(2001), No. 19-20, p. 3009.

    Article  Google Scholar 

  19. M. Richert, H. Stüwe, J. Richert, R. Pippan, and C. Motz, Characteristic features of microstructure of AlMg5 deformed to large plastic strains, Mater. Sci. Eng. A, 301(2001), No. 2, p. 237.

    Article  Google Scholar 

  20. J. Richert and M. Richert, A new method for unlimited deformation of metals and alloys, Aluminum, 62(1986), No. 8, p. 604.

    Google Scholar 

  21. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process, Acta Mater., 47(1999), No. 2, p. 579.

    Article  Google Scholar 

  22. Y. Saito, R.G. Hong, N. Tsuji, H. Utsunomiya, and T. Sakai, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Mater., 39(1998), No. 9, p. 1221.

    Article  Google Scholar 

  23. H. Pirgazi, A. Akbarzadeh, R. Petrov, and L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding, Mater. Sci. Eng. A, 497(2008), No. 1-2, p. 132.

    Article  Google Scholar 

  24. M. Eizadjou, A.K. Talachi, H.D. Manesh, H.S. Shahabi, and K. Janghorban, Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process, Compos. Sci. Technol., 68(2008), No. 9, p. 2003.

    Article  Google Scholar 

  25. R.N. Dehsorkhi, F. Qods, and M. Tajally, Investigation on microstructure and mechanical properties of Al–Zn composite during accumulative roll bonding (ARB) process, Mater. Sci. Eng. A, 530(2011), p. 63.

    Article  Google Scholar 

  26. H. Chang, M.Y. Zheng, C. Xu, G.D. Fan, H.G. Brokmeier, and K. Wu, Microstructure and mechanical properties of the Mg/Al multilayer fabricated by accumulative roll bonding (ARB) at ambient temperature, Mater. Sci. Eng. A, 543(2012), p. 249.

    Article  Google Scholar 

  27. A. Mozaffari, H.D. Manesh, and K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process, J. Alloys Compd., 489(2010), No. 1, p. 103.

    Article  Google Scholar 

  28. M. Tayyebi and B. Eghbali, Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding, Mater. Sci. Eng. A, 559(2013), p. 759.

    Article  Google Scholar 

  29. H.P. Ng, T. Przybilla, C. Schmidt, R. Lapovok, D. Orlov, H.W. Hpِpel, and M. Gkِen, Asymmetric accumulative roll bonding of aluminium-titanium composite sheets, Mater. Sci. Eng. A, 576(2013), p. 306.

    Article  Google Scholar 

  30. P.D. Motevalli and B. Eghbali, Microstructure and mechanical properties of Tri-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding, Mater. Sci. Eng. A, 628(2015), p. 135.

    Article  Google Scholar 

  31. M.M. Mahdavian, L. Ghalandari, and M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties, Mater. Sci. Eng. A, 579(2013), p. 99.

    Article  Google Scholar 

  32. R. Zhang and V.L. Acoff, Processing sheet materials by accumulative roll bonding and reaction annealing from Ti/Al/Nb elemental foils, Mater. Sci. Eng. A, 463(2007), No. 1-2, p. 67.

    Article  Google Scholar 

  33. A. Shabani, M.R. Toroghinejad, and A. Shafyei, Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties, Mater. Sci. Eng. A, 558(2012), p. 386.

    Article  Google Scholar 

  34. G. Min, J.M. Lee, S.B. Kang, and H.W. Kim, Evolution of microstructure for multilayered Al/Ni composites by accumulative roll bonding process, Mater. Lett., 60(2006), No. 27, p. 3255.

    Article  Google Scholar 

  35. D. Rahmatabadi, R. Hashemi, B. Mohammadi, and T. Shojaee, Experimental evaluation of the plane stress fracture toughness for ultra-fine grained aluminum specimens prepared by accumulative roll bonding process, Mater. Sci. Eng. A, 708(2017), p. 301.

    Article  Google Scholar 

  36. A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals III: Fracture and fatigue of nanostructured metallic materials, Acta Mater., 107(2016), p. 508.

    Article  Google Scholar 

  37. Z.P. Xing, S.B. Kang, and H.W. Kim, Structure and properties of AA3003 alloy produced by accumulative roll bonding process, J. Mater. Sci., 37(2002), No. 4, p. 717.

    Article  Google Scholar 

  38. N. Hansen, X. Huang, R. Ueji, and N. Tsuji, Structure and strength after large strain deformation, Mater. Sci. Eng. A, 387-389(2004), p. 191.

    Article  Google Scholar 

  39. D. Rahmatabadi and R. Hashemi, Experimental evaluation of forming limit diagram and mechanical properties of nano/ultra-fine grained aluminum strips fabricated by accumulative roll bonding, Int. J. Mater. Res., 108(2017), No.12, p. 1036.

    Article  Google Scholar 

  40. H. Abdolvand, G. Faraji, M.K.B. Givi, R. Hashemi, and M. Riazat, Evaluation of the microstructure and mechanical properties of the ultrafine grained thin-walled tubes processed by severe plastic deformation, Met. Mater. Int., 21(2015), No. 6, p. 1068.

    Article  Google Scholar 

  41. G. Faraji, M.M. Mashhadi, A.R. Bushroa, and A. Babaei, TEM analysis and determination of dislocation densities in nanostructured copper tube produced via parallel tubular channel angular pressing process, Mater. Sci. Eng. A, 563(2013), p. 193.

    Article  Google Scholar 

  42. V.Y. Mehr, A. Rezaeian, and M.R. Toroghinejad, Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite, Mater. Des., 70(2015), p. 53.

    Article  Google Scholar 

  43. M. Sedighi, M.H. Vini, and P. Farhadipour, Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding, Powder Metall. Met. Ceram., 55(2016), No. 7-8, p. 413.

    Article  Google Scholar 

  44. V.Y. Mehr, M.R. Toroghinejad, and A. Rezaeian, Mechanical properties and microstructure evolutions of multilayered Al-Cu composites produced by accumulative roll bonding process and subsequent annealing, Mater. Sci. Eng. A, 601(2014), p. 40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Hashemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmatabadi, D., Tayyebi, M., Hashemi, R. et al. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces. Int J Miner Metall Mater 25, 564–572 (2018). https://doi.org/10.1007/s12613-018-1603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-018-1603-x

Keywords

Navigation