Skip to main content
Log in

The radiation damage tolerance of ultra-high strength nanolayered composites

  • Research Summary
  • Small-Scale Mechanical Behavior
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Interfaces act as obstacles to slip and sinks for radiation-induced defects. Hence, nanolayered composites that contain a large volume fraction of interfaces provide over an order of magnitude increase in strength and enhanced radiation damage tolerance compared to bulk materials. This paper shows the experimental and atomistic modeling results from a Cu-Nb nanolayered composite to highlight the roles of nanostructuring length scales and the response of interfaces to ion collision cascades in designing composite materials with high radiation damage tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BES Workshop report Basic Research Needs for Advanced Nuclear Energy Systems, www.science.doe.gov/bes/reports/files/ANES_rpt.pdf.

  2. A. Misra, H. Kung, and R.G. Hoagland, Philos. Mag., 84 (2004), p. 1021.

    Article  CAS  Google Scholar 

  3. T. Hochbauer et al., J. Appl. Phys., 98 (2005), p. 123516.

    Article  Google Scholar 

  4. M.J. Demkowicz et al., Nucl. Instru. Methods B, 261 (2007) p. 524.

    Article  CAS  Google Scholar 

  5. X. Zhang et al., Nucl. Instru. Methods B, 261 (2007) p. 1129.

    Article  CAS  Google Scholar 

  6. K. Hattar et al., Appl. Phys. Lett. (submitted).

  7. M.S. Daw and M.I. Baskes, Physical Review B, 29 (1984), p. 6443.

    Article  CAS  Google Scholar 

  8. Y. Mishin et al., Physical Review B (Condensed Matter and Materials Physics), 63 (2001), p. 224106.

    Google Scholar 

  9. R.A. Johnson and D.J. Oh, Journal of Materials Research, 4 (1989), p. 1195.

    CAS  Google Scholar 

  10. M.J. Demkowicz and R.G. Hoagland, J. Nuc. Mater. (in press).

  11. J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (New York: Pergamon, 1985).

    Google Scholar 

  12. K.T. Kuwata, R.I. Erickson, and J.R. Doyle, Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 201 (2003), p. 566.

    Article  CAS  Google Scholar 

  13. P.M. Anderson et al., Acta Materialia, 51 (2003), p. 6059.

    Article  CAS  Google Scholar 

  14. G.J. Dienes and G.H. Vineyard, Radiation Effects in Solids (New York: Interscience Publishers, 1957).

    Google Scholar 

  15. A. Misra, J.P. Hirth, and R.G. Hoagland, Acta Materialia, 53 (2005), p. 4817.

    Article  CAS  Google Scholar 

  16. N. Nita et al., Philos. Mag., 85 (2005), p. 723.

    Article  CAS  Google Scholar 

  17. M. Samaras et al., Phys. Rev. Lett., 88 (2002), p. 125505.

    Article  CAS  Google Scholar 

  18. M. Rose, A.G. Balogh, and H. Hahn, Nucl. Instru. Methods B, 127/128 (1997), p. 119.

    Article  CAS  Google Scholar 

  19. H.L. Hienisch, F. Gao, and R.J. Kurtz, J. Nucl. Mater., 329–333 (2004), p. 924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Misra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misra, A., Demkowicz, M.J., Zhang, X. et al. The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62–65 (2007). https://doi.org/10.1007/s11837-007-0120-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0120-6

Keywords

Navigation