Skip to main content
Log in

Hot Compression Behavior and Microstructure Evolution of an Mg–Gd–Y–Zn–Zr Alloy Containing the 14H LPSO Phase with Different Morphologies

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this paper, the microstructures with two different morphologies of intragranular lamellar 14H long-period stacking-ordered (LPSO) phase were designed in Mg–4.7Gd–3.4Y–1.2Zn–0.5Zr (wt pct) alloy, and their hot processing maps were established based on a series of hot compression tests. The deformation behavior and microstructure evolution of the two alloys during hot compression were investigated, the effect of 14H LPSO phase on dynamic recrystallization (DRX), texture, and hot workability also discussed. The alloy annealed at 400 °C (400AT alloy) with densely distributed 14H LPSO phase and the alloy annealed at 450 °C (450AT alloy) with sparsely distributed 14H LPSO phase has the approximate peak stress and activation energy values. However, the 400AT alloy offers a greater hot processing window than the 450AT alloy. With the compressive temperature increasing or the strain rate decreasing, 14H LPSO phase gradually changes from a metastable state to a stable state in 400AT alloys, while it gradually dissolves in 450AT alloy. In addition, necklace-shaped discontinuous dynamic recrystallization (DDRX) grains were mainly distributed around the original deformed grains, continuous dynamic recrystallization (CDRX) grains were primarily located in the kink boundary, triangular grain boundary and widely spaced LPSO phase lamella in both alloys. For the 450AT alloy, more 14H LPSO phase kink boundary and lager space between LPSO phase lamellae promotes to the formation of CDRX grains, while limit the texture weakening. The 400AT alloy exhibits a weaker texture intensity and more randomly distributed grain orientation, which was related to the existence of large amount of DDRX grains. The weaker basal texture was beneficial to the hot workability and well corresponding to the larger appropriate hot processing region of 400 AT alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. M. Matsushita, K. Masuda, R. Waki, H. Ohfuji, M. Yamasaki, Y. Kawamura, and Y. Higo: J. Alloys Compd., 2019, vol. 784, pp. 1284–89.

    Article  CAS  Google Scholar 

  2. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  3. G.L. Bi, D.Q. Fang, W.C. Zhang, J. Sudagar, Q.X. Zhang, J.S. Lian, and Z.H. Jiang: J. Mater. Sci. Technol., 2012, vol. 28, pp. 543–51.

    Article  CAS  Google Scholar 

  4. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Mater. Trans., 2001, vol. 42, pp. 1172–76.

    Article  CAS  Google Scholar 

  5. L.Y. Feng, X.X. Dong, Q. Cai, B. Wang, and S.X. Ji: J. Alloys Compd., 2019, vol. 793, 166364.

    Google Scholar 

  6. J.S. Zhang, C. Xin, W.L. Cheng, L.P. Bian, H.X. Wang, and C.X. Xu: J. Alloys Compd., 2013, vol. 558, pp. 195–202.

    Article  CAS  Google Scholar 

  7. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv: Mater. Sci. Eng. A, 2012, vol. 547, pp. 93–98.

    Article  CAS  Google Scholar 

  8. S.M. Ramezani, A. Zarei-Hanzaki, H.R. Abedi, A. Salandari-Rabori, and P. Minarik: J. Alloys Compd., 2019, vol. 793, pp. 134–45.

    Article  CAS  Google Scholar 

  9. H. Okuda, T. Horiuchi, S. Hifumi, M. Yamasaki, Y. Kawamura, and S. Kimura: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4780–785.

    Article  Google Scholar 

  10. Y. Tang, Q.C. Le, R.D.K. Misra, G.Q. Su, and J.Z. Cui: Mater. Sci. Eng. A, 2018, vol. 712, pp. 266–80.

    Article  CAS  Google Scholar 

  11. C. Xu, M.Y. Zheng, K. Wu, E.D. Wang, G.H. Fan, S.W. Xu, S. Kamado, X.D. Liu, G.J. Wang, and X.Y. Lv: Mater. Sci. Eng. A, 2013, vol. 559, pp. 615–22.

    Article  CAS  Google Scholar 

  12. X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, X.Z. Han, and Z.Y. Chen: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3060–72.

    Article  Google Scholar 

  13. G. Liu, Z.D. Ma, G.B. Wei, T.C. Xu, X. Zhang, Y. Yang, W.D. Xie, and X.D. Peng: J. Mater. Process. Technol., 2019, vol. 267, pp. 393–402.

    Article  CAS  Google Scholar 

  14. H. Somekawa and D. Ando: Mater. Sci. Eng. A, 2020, vol. 780, 139144.

    Article  CAS  Google Scholar 

  15. C.R. Liu, L. Li, W. Zhou, X. Bai, H.L. Zhong, Z.Q. Zhang, and Z.Z. Wen: J. Alloys Compd., 2023, vol. 937, 168356.

    Article  CAS  Google Scholar 

  16. K. Hagihara, T. Mayama, M. Honnami, M. Yamasaki, H. Izuno, T. Okamoto, T. Ohashi, T. Nakano, and Y. Kawamura: Int. J. Plasticity, 2016, vol. 77, pp. 174–91.

    Article  CAS  Google Scholar 

  17. M. Yamasaki, K. Hagihara, S. Inoue, J.P. Hadorn, and Y. Kawamura: Acta Mater., 2013, vol. 61, pp. 2065–76.

    Article  CAS  Google Scholar 

  18. E. Oñorbe, P. Pérez Zubiaur, G. Garcés, and P. Adeva: J. Mater. Sci., 2012, vol. 47, pp. 1085–93.

    Article  Google Scholar 

  19. G.X. Wang, P.L. Mao, Z. Wang, L. Zhou, F. Wang, and Z. Liu: J. Mater. Res. Technol., 2022, vol. 21, pp. 40–53.

    Article  CAS  Google Scholar 

  20. J.H. Zhang, S.J. Liu, R.Z. Wu, L.G. Hou, and M.L. Zhang: J. Magnes. Alloy., 2018, vol. 6, pp. 277–91.

    Article  CAS  Google Scholar 

  21. J.B. Lyu, J. Kim, H.X. Liao, J. She, J.F. Song, J. Peng, F.S. Pan, and B. Jiang: Mater. Sci. Eng. A, 2020, vol. 773, 138735.

    Article  CAS  Google Scholar 

  22. G. Garces, D.G. Morris, M.A. Muñoz-Morris, P. Perez, D. Tolnai, C. Mendis, A. Stark, H.K. Lim, S. Kim, N. Shell, and P. Adeva: Acta Mater., 2015, vol. 94, pp. 78–86.

    Article  CAS  Google Scholar 

  23. Y. Chino, M. Mabuchi, S. Hagiwara, H. Iwasaki, A. Yamamoto, and H. Tsubakino: Scr. Mater., 2004, vol. 51, pp. 711–14.

    Article  CAS  Google Scholar 

  24. M. Li, X. Wang, Q.Y. Feng, J. Wang, Z. Xu, and P.H. Zhang: Mater. Charact., 2017, vol. 125, pp. 123–33.

    Article  CAS  Google Scholar 

  25. X. Wu, F.S. Pan, R.J. Cheng, and S.Q. Luo: Mater. Sci. Eng. A, 2018, vol. 726, pp. 64–68.

    Article  CAS  Google Scholar 

  26. Y.F. Wang, F. Zhang, Y.T. Wang, Y.B. Duan, K.J. Wang, W.J. Zhang, and J. Hu: Mater. Sci. Eng. A, 2019, vol. 745, pp. 149–58.

    Article  CAS  Google Scholar 

  27. B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, and A.T. Tang: Mater. Sci. Eng. A, 2014, vol. 599, pp. 150–59.

    Article  CAS  Google Scholar 

  28. D.X. Zhang, Z. Tan, Q.H. Huo, Z.Y. Xiao, Z.W. Fang, and X.Y. Yang: Mater. Sci. Eng. A, 2018, vol. 715, pp. 389–403.

    Article  CAS  Google Scholar 

  29. C. Xu, T. Nakata, X. Qiao, M. Zheng, K. Wu, and S. Kamado: Sci. Rep., 2017, vol. 7, pp. 1–10.

    Article  Google Scholar 

  30. J.X. Xiao, Z.Y. Chen, J.B. Shao, T. Chen, X. Lin, and C.M. Liu: Mater. Charact., 2020, vol. 167, 110515.

    Article  CAS  Google Scholar 

  31. Y.X. Han, S.H. He, T. Chen, J.B. Shao, C.M. Liu, Z.Y. Chen, and Z. Yang: Mater. Sci. Eng. A, 2022, vol. 856, 144002.

    Article  CAS  Google Scholar 

  32. T. Chen, Z.Y. Chen, J.B. Shao, and R.K. Wang: Mater. Sci. Eng. A, 2019, vol. 750, pp. 31–39.

    Article  CAS  Google Scholar 

  33. T. Chen, Z.Y. Chen, J.B. Shao, R.K. Wang, L.H. Mao, and C.M. Liu: Mater. Des., 2018, vol. 152, pp. 1–9.

    Article  Google Scholar 

  34. J.K. Kim, W.S. Ko, S. Sandlöbes, M. Heidelmann, B. Grabowski, and D. Raabe: Acta Mater., 2016, vol. 112, pp. 171–83.

    Article  CAS  Google Scholar 

  35. H. Liu, K. Yan, J.L. Yan, F. Xue, J.P. Sun, J.H. Jiang, and A.B. Ma: Trans. Nonferrous Met. Soc., 2017, vol. 27, pp. 63–72.

    Article  CAS  Google Scholar 

  36. Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater., 2010, vol. 58, pp. 2936–47.

    Article  CAS  Google Scholar 

  37. Z.C. Sun, H.L. Wu, J. Cao, and Z.K. Yin: Int. J. Plasticity, 2018, vol. 106, pp. 73–87.

    Article  CAS  Google Scholar 

  38. J.R. Kang, X. Liu, and T.Z. Wang: Scr. Mater., 2023, vol. 224, 115121.

    Article  CAS  Google Scholar 

  39. L.H. Li, F.G. Qi, Q. Wang, C.H. Hou, N. Zhao, Y. Yang, S.S. Chai, and X.P. Ouyang: Mater. Charact., 2020, vol. 169, 110649.

    Article  CAS  Google Scholar 

  40. X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, W.H. Liu, and L.W. Lu: J. Alloys Compd., 2017, vol. 724, pp. 528–36.

    Article  CAS  Google Scholar 

  41. B.J. Lv, J. Peng, Y. Peng, A.T. Tang, and F.S. Pan: Mater. Sci. Eng. A, 2013, vol. 579, pp. 209–16.

    Article  CAS  Google Scholar 

  42. A. Hadadzadeh, F. Mokdad, M.A. Wells, and D.L. Chen: Mater. Sci. Eng. A, 2018a, vol. 709, pp. 285–89.

    Article  CAS  Google Scholar 

  43. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  44. Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3473–87.

    Article  Google Scholar 

  45. Y. Yao, C.M. Liu, Y.C. Wan, S.L. Yu, Y.H. Gao, and S.N. Jiang: Mater. Charact., 2020, vol. 161, p. 1110120.

    Article  Google Scholar 

  46. X.H. Shao, Z.Q. Yang, and X.L. Ma: Acta Mater., 2010, vol. 58, pp. 4760–71.

    Article  CAS  Google Scholar 

  47. J.Y. Li, F.L. Wang, J. Zeng, C.Y. Zhao, L. Jin, and J. Dong: Mater. Charact., 2022, vol. 193, p. 112326.

    Article  CAS  Google Scholar 

  48. D.F. Zheng, Q.C. Zhu, X.Q. Zeng, and Y.X. Li: Mater. Lett., 2022, vol. 311, p. 131524.

    Article  CAS  Google Scholar 

  49. L.S. Toth, Y. Estrin, R. Lapovok, and C.F. Gu: Acta Mater., 2010, vol. 58, pp. 1782–94.

    Article  CAS  Google Scholar 

  50. D.H. Qin, M.J. Wang, C.Y. Sun, Z.X. Su, L.Y. Qian, and Z.H. Sun: Mater. Sci. Eng. A, 2020, vol. 788, p. 139537.

    Article  CAS  Google Scholar 

  51. J.K. Kim, S. Sandlöbes, and D. Raabe: Acta Mater., 2015, vol. 82, pp. 414–23.

    Article  CAS  Google Scholar 

  52. A. Galiyev, R. Kaibyshev, and G. Gottstein: Acta Mater., 2001, vol. 49, pp. 1199–1207.

    Article  CAS  Google Scholar 

  53. D.D. Zhang, C.M. Liu, S.N. Jiang, Y.H. Gao, Y.C. Wan, and Z.Y. Chen: J. Alloys Compd., 2023, vol. 944, p. 169190.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Key Research and Development Project of Hunan Province (No. 2023GK2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Chen, Z., Chen, H. et al. Hot Compression Behavior and Microstructure Evolution of an Mg–Gd–Y–Zn–Zr Alloy Containing the 14H LPSO Phase with Different Morphologies. Metall Mater Trans A 54, 4806–4824 (2023). https://doi.org/10.1007/s11661-023-07203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07203-9

Navigation