Skip to main content
Log in

Hot deformation behavior and microstructural evolution of Mg–Zn–Ca–La alloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The hot deformation behavior and processing characteristics of Mg–3Zn–0.3Ca–0.4La (wt%) alloys were investigated by hot compression deformation. The results suggested that deformation parameters had significant effects on deformation behavior and dynamic recrystallization of the Mg–Zn–Ca–La alloy. The average activation energy of deformation was calculated to be 188.9 kJ/mol. The processing map was constructed and analyzed based on the dynamic material model, and the optimum hot working window of the alloy was determined to be the temperature of 350 °C and the strain rates between 0.001 and 0.01 s−1. Furthermore, the DRX kinetic model of the Mg–3Zn–0.3Ca–0.4La (wt%) alloy was established, which implied that incomplete dynamic recrystallization occurred for the Mg–Zn–Ca–La alloy in the present work. Microstructure analysis indicated that deformation parameters played a critical role on the microstructure optimization. The dynamically recrystallized (DRXed) region fraction and the DRXed grain size were increased with the increase of deformation temperature and decrease of deformation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. X.J. Wang, D.K. Xu, R.Z. Wu, X.B. Chen, Q.M. Peng, L. Jin, Y.C. Xin, Z.Q. Zhang, Y. Liu, X.H. Chen, G. Chen, K.K. Deng, and H.Y. Wang: What is going on in magnesium alloys?J. Mater. Sci. Technol. 34, 245–247 (2018).

    Article  Google Scholar 

  2. L.B. Tong, J.B. Zhang, Q.X. Zhang, Z.H. Jiang, C. Xu, S. Kamado, D.P. Zhang, J. Meng, L.R. Cheng, and H.J. Zhang: Effect of warm rolling on the microstructure, texture and mechanical properties of extruded Mg–Zn–Ca–Ce/La alloy. Mater. Charact. 115, 1–7 (2016).

    Article  CAS  Google Scholar 

  3. C. Xu, J.P. Pan, T. Nakata, X.G. Qiao, Y.Q. Chi, M.Y. Zheng, and S. Kamado: Hot compression deformation behavior of Mg–9Gd–2.9Y–1.9Zn–0.4Zr–0.2Ca (wt%) alloy. Mater. Charact. 124, 40–49 (2016).

    Article  CAS  Google Scholar 

  4. C. Xu, M. Zheng, S. Xu, K. Wu, E. Wang, G. Fan, and S. Kamado: Improving strength and ductility of Mg–Gd–Y–Zn–Zr alloy simultaneously via extrusion, hot rolling and ageing. Mater. Sci. Eng., A 643, 137–141 (2015).

    Article  CAS  Google Scholar 

  5. X.B. Liu, R.S. Chen, and E.H. Han: Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 465, 232–238 (2008).

    Article  CAS  Google Scholar 

  6. L. Zhang, J. Zhang, C. Xu, S. Liu, Y. Jiao, L. Xu, Y. Wang, J. Meng, R. Wu, and M. Zhang: Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy. Mater. Des. 61, 168–176 (2014).

    Article  CAS  Google Scholar 

  7. B. Pourbahari, M. Emamy, and H. Mirzadeh: Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Prog. Nat. Sci.: Mater. Int. 27, 228–235 (2017).

    Article  CAS  Google Scholar 

  8. B. Pourbahari, H. Mirzadeh, and M. Emamy: Toward unraveling the effects of intermetallic compounds on the microstructure and mechanical properties of Mg–Gd–Al–Zn magnesium alloys in the as-cast, homogenized, and extruded conditions. Mater. Sci. Eng., A 680, 39–46 (2017).

    Article  CAS  Google Scholar 

  9. B. Pourbahari, H. Mirzadeh, and M. Emamy: The effects of grain refinement and rare earth intermetallics on mechanical properties of as-cast and wrought magnesium alloys. J. Mater. Eng. Perform. 27, 1327–1333 (2018).

    Article  CAS  Google Scholar 

  10. B. Pourbahari, M. Emamy, and H. Mirzadeh: Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Prog. Nat. Sci.: Mater. Int. 27, 228–235 (2017).

    Article  CAS  Google Scholar 

  11. J-w. Kang, C-j. Wang, K-k. Deng, K-b. Nie, Y. Bai, and W-j. Li: Microstructure and mechanical properties of Mg–4Zn–0.5Ca alloy fabricated by the combination of forging, homogenization and extrusion process. J. Alloys Compd. 720, 196–206 (2017).

    Article  CAS  Google Scholar 

  12. C.L. Mendis, K. Oh-ishi, Y. Kawamura, T. Honma, S. Kamado, and K. Hono: Precipitation-hardenable Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) wrought magnesium alloy. Acta Mater. 57, 749–760 (2009).

    Article  CAS  Google Scholar 

  13. Y.M. Kim, D.Y. Chang, H.S. Kim, and B.S. You: Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures. Scripta Mater. 65, 958–961 (2011).

    Article  CAS  Google Scholar 

  14. B.S. You, W.W. Park, and I.S. Chung: The effect of calcium additions on the oxidation behavior in magnesium alloys. Scripta Mater. 42, 1089–1094 (2000).

    Article  CAS  Google Scholar 

  15. G. Wu, Y. Fan, H. Gao, C. Zhai, and Y.P. Zhu: The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng., A 408, 255–263 (2005).

    Article  CAS  Google Scholar 

  16. M. Vogel, O. Kraft, and E. Arzt: Effect of calcium additions on the creep behavior of magnesium die-cast alloy ZA85. Metall. Mater. Trans. A 36, 1713–1719 (2005).

    Article  Google Scholar 

  17. Y. Chino, T. Ueda, Y. Otomatsu, K. Sassa, X. Huang, K. Suzuki, and M. Mabuchi: Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys. Mater. Trans. 52, 1477–1482 (2011).

    Article  CAS  Google Scholar 

  18. C. Zhang, S. Guan, L. Wang, S. Zhu, and L. Chang: The microstructure and corrosion resistance of biological Mg–Zn–Ca alloy processed by high-pressure torsion and subsequently annealing. J. Mater. Res. 32, 1061–1072 (2017).

    Article  CAS  Google Scholar 

  19. N. Stanford and M.R. Barnett: The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng., A 496, 399–408 (2008).

    Article  CAS  Google Scholar 

  20. N. Stanford, D. Atwell, and M.R. Barnett: The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 58, 6773–6783 (2010).

    Article  CAS  Google Scholar 

  21. Y. Du, M. Zheng, X. Qiao, W. Peng, and B. Jiang: Effect of La addition on the microstructure and mechanical properties of Mg–6 wt% Zn alloys. Mater. Sci. Eng., A 673, 47–54 (2016).

    Article  CAS  Google Scholar 

  22. G.G. Wang, G.S. Huang, X. Chen, Q.Y. Deng, A.T. Tang, B. Jiang, and F.S. Pan: Effects of Zn addition on the mechanical properties and texture of extruded Mg–Zn–Ca–Ce magnesium alloy sheets. Mater. Sci. Eng., A 705, 46–54 (2017).

    Article  CAS  Google Scholar 

  23. Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu: The microstructure, texture and mechanical properties of extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt%) alloy. Mater. Sci. Eng., A 620, 164–171 (2015).

    Article  CAS  Google Scholar 

  24. Y.Z. Du, X.G. Qiao, M.Y. Zheng, K. Wu, and S.W. Xu: Development of high-strength, low-cost wrought Mg–2.5 mass% Zn alloy through micro-alloying with Ca and La. Mater. Des. 85, 549–557 (2015).

    Article  CAS  Google Scholar 

  25. A. Jarzębska, M. Bieda, J. Kawałko, Ł. Rogal, P. Koprowski, K. Sztwiertnia, W. Pachla, and M. Kulczyk: A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Mater. Lett. 211, 58–61 (2018).

    Article  CAS  Google Scholar 

  26. C-C. Zhang, C. Wang, M. Zha, H-Y. Wang, Z-Z. Yang, and Q-C. Jiang: Microstructure and tensile properties of rolled Mg–4Al–2Sn–1Zn alloy with pre-rolling deformation. Mater. Sci. Eng., A 719, 132–139 (2018).

    Article  CAS  Google Scholar 

  27. Z. Yu, Y. Huang, W. Gan, Z. Zhong, N. Hort, and J. Meng: Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure of a Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy. J. Mater. Sci. 52, 6670–6686 (2017).

    Article  CAS  Google Scholar 

  28. X. Liu, Z. Zhang, W. Hu, Q. Le, L. Bao, and J. Cui: Effects of extrusion speed on the microstructure and mechanical properties of Mg9Gd3Y1.5Zn0.8Zr alloy. J. Mater. Sci. Technol. 32, 313–319 (2016).

    Article  CAS  Google Scholar 

  29. B. Kim, S-M. Baek, J.G. Lee, and S.S. Park: Enhanced strength and plasticity of Mg–6Zn–0.5Zr alloy by low-temperature indirect extrusion. J. Alloys Compd. 706, 56–62 (2017).

    Article  CAS  Google Scholar 

  30. L. Ou, Y. Nie, and Z. Zheng: Strain compensation of the constitutive equation for high temperature flow stress of a Al–Cu–Li alloy. J. Mater. Eng. Perform. 23, 25–30 (2014).

    Article  CAS  Google Scholar 

  31. H. Liao, Y. Wu, K. Zhou, and J. Yang: Hot deformation behavior and processing map of Al–Si–Mg alloys containing different amount of silicon based on Gleebe-3500 hot compression simulation. Mater. Des. 65, 1091–1099 (2015).

    Article  CAS  Google Scholar 

  32. J.W. Lu, D.D. Yin, G.H. Huang, G.F. Quan, Y. Zeng, H. Zhou, and Q.D. Wang: Plastic anisotropy and deformation behavior of extruded Mg–Y sheets at elevated temperatures. Mater. Sci. Eng., A 700, 598–608 (2017).

    Article  CAS  Google Scholar 

  33. B-J. Lv, J. Peng, Y-J. Wang, X-Q. An, L-P. Zhong, A-T. Tang, and F-S. Pan: Dynamic recrystallization behavior and hot workability of Mg–2.0Zn–0.3Zr–0.9Y alloy by using hot compression test. Mater. Des. 53, 357–365 (2014).

    Article  CAS  Google Scholar 

  34. K. Nie, X. Kang, K. Deng, T. Wang, Y. Guo, and H. Wang: Effect of SiC nanoparticles on hot deformation behavior and processing maps of magnesium alloy AZ91. Nanomaterials 8, 82 (2018).

    Article  CAS  Google Scholar 

  35. H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi: Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning. Mater. Des. 68, 228–231 (2015).

    Article  CAS  Google Scholar 

  36. H. Mirzadeh: Quantification of the strengthening effect of reinforcements during hot deformation of aluminum-based composites. Mater. Des. 65, 80–82 (2015).

    Article  CAS  Google Scholar 

  37. R. Lino, L.G.L. Guadanini, L.B. Silva, J.G.C. Neto, and R. Barbosa: Effect of Nb and Ti addition on activation energy for austenite hot deformation. J. Mater. Res. Technol. (2018). doi: https://doi.org/10.1016/j.jmrt.2017.11.002.

  38. D. Odoh, Y. Mahmoodkhani, and M. Wells: Effect of alloy composition on hot deformation behavior of some Al–Mg–Si alloys. Vacuum 149, 248–255 (2018).

    Article  CAS  Google Scholar 

  39. Z.R. Zeng, Y.M. Zhu, S.W. Xu, M.Z. Bian, C.H.J. Davies, N. Birbilis, and J.F. Nie: Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater. 105, 479–494 (2016).

    Article  CAS  Google Scholar 

  40. C.C. Sun, K. Liu, Z.H. Wang, L.I. Shu-Bo, D.U. Xian, and D.U. Wen-Bo: Hot deformation behaviors and processing maps of Mg–Zn–Er alloys based on Gleeble–1500 hot compression simulation. Trans. Nonferrous Met. Soc. 26, 3123–3134 (2016).

    Article  CAS  Google Scholar 

  41. D. Liu, Y. Liu, Y. Zhao, Y. Huang, and M. Chen: The hot deformation behavior and microstructure evolution of HA/Mg–3Zn–0.8Zr composites for biomedical application. Trans. Nonferrous Met. Soc. 77, 690–697 (2017).

    CAS  Google Scholar 

  42. G. Wang, L. Xu, Y. Wang, Z. Zheng, Y. Cui, and R. Yang: Processing maps for hot working behavior of a PM TiAl alloy. J. Mater. Sci. Technol. 27, 893–898 (2011).

    Article  Google Scholar 

  43. J. Yu, Z. Zhang, Q. Wang, X. Yin, J. Cui, and H. Qi: Dynamic recrystallization behavior of magnesium alloys with LPSO during hot deformation. J. Alloys Compd. 704, 382–389 (2017).

    Article  CAS  Google Scholar 

  44. S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and H. Beladi: Dynamic recrystallization in AZ31 magnesium alloy. Mater. Sci. Eng., A 456, 52–57 (2007).

    Article  CAS  Google Scholar 

  45. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093–5103 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This study was supported by Shaanxi Provincial Department of Education Fund (No. 17JK0538).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhou Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Du, Y., Jiang, B. et al. Hot deformation behavior and microstructural evolution of Mg–Zn–Ca–La alloys. Journal of Materials Research 33, 2817–2826 (2018). https://doi.org/10.1557/jmr.2018.265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.265

Navigation