Skip to main content
Log in

Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The distribution characteristics of in-grain misorientation axes (IGMA) in cold-rolled pure titanium were investigated using electron backscatter diffraction (EBSD). Depending on the orientation of individual grains, two distinct IGMA distribution patterns were observed: one with strong intensities of IGMA around ⟨0001⟩ and the other with those around ⟨uvt0⟩. Analyses based on the Taylor axes and Schmid factors of possible slip modes suggested that the former pattern arises from predominant activation of prism ⟨a⟩ slip, while activation of \( \{ 11\bar{2}2\} \langle \bar{1}\bar{1}23 \rangle \) slip under the suppression of prism ⟨a⟩ slip results in the latter pattern. It was also found that prism ⟨a⟩ slip becomes more active with increasing strain, playing a critical role in the plasticity of pure titanium. The present work demonstrates that IGMA analysis of EBSD data may be used to explore the active slip mode in polycrystalline hexagonal-close-packed (hcp) metals deformed to moderate to large strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. TSL-OIM is a trademark of TexSEM Laboratories, Inc., Draper, UT.

References

  1. P.G. Patridge: Metall. Rev., 1967, vol. 118, pp. 169–94.

    Google Scholar 

  2. M.H. Yoo: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 409–18.

    ADS  Google Scholar 

  3. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  CAS  Google Scholar 

  4. C.J. McHargue and J.P. Hammond: Acta Metall., 1953, vol. 1, pp. 700–05.

    Article  Google Scholar 

  5. A.T. Churchman: Proc. R. Soc., 1954, vol. 226, pp. 216–26.

    Article  CAS  ADS  Google Scholar 

  6. A. Akhtar: Acta Metall., 1973, vol. 21, pp. 1–11.

    Article  Google Scholar 

  7. A. Akhtar: J. Nucl. Mater., 1973, vol. 47, pp. 79–86.

    Article  CAS  ADS  Google Scholar 

  8. A. Akhtar: Metall. Trans. A, 1975, vol. 6A, pp. 1105–13.

    CAS  ADS  Google Scholar 

  9. T. Sakai and M.E. Fine: Scripta Metall., 1974, vol. 8, pp. 541–44.

    Article  CAS  Google Scholar 

  10. A. Akhtar and E. Teghtoonian: Metall. Trans. A, 1975, vol. 6A, pp. 2201–08.

    CAS  ADS  Google Scholar 

  11. A. Akhtar: Scripta Metall., 1975, vol. 9, pp. 859–61.

    Article  CAS  Google Scholar 

  12. P. Merle: J. Nucl. Mater., 1987, vol. 144, pp. 275–77.

  13. H. Numakura, Y. Minonishi, and M. Koiwa: Scripta Metall., 1986, vol. 20, pp. 1581–86.

    Article  CAS  Google Scholar 

  14. L. Xiao and H. Gu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1021–33.

    Article  CAS  Google Scholar 

  15. J. Koike and R. Ohyama: Acta Mater., 2005, vol. 53, pp. 1963–72.

    CAS  Google Scholar 

  16. N.E. Paton and W.A. Backofen: Metall. Trans., 1970, vol. 1, pp. 2839–47.

    CAS  Google Scholar 

  17. Y. Minonishi and S. Morozumi: Scripta Metall., 1982, vol. 16, pp. 427–30.

    Article  CAS  Google Scholar 

  18. M.G. Glavicic, A.A. Salem, and S.L. Semiatin: Acta Mater., 2004, vol. 52, pp. 647–55.

    Article  CAS  Google Scholar 

  19. M.G. Glavicic and S.L. Semiatin: Acta Mater., 2006, vol. 54, pp. 5337–47.

    Article  CAS  Google Scholar 

  20. I.C. Dragomir, D.S. Li, G.A. Castello-Branco, H. Garmestani, R.L. Snyder, G. Ribarik, and T. Ungár: Mater. Charact., 2005, vol. 55, pp. 66–74.

    Article  CAS  Google Scholar 

  21. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé: Mater. Sci. Eng. A, 2005, vol. 399, pp. 1–12.

    Article  Google Scholar 

  22. S.R. Agnew, D.W. Brown, and C.N. Tomé: Acta Mater., 2006, vol. 54, pp. 4841–52.

    Article  CAS  Google Scholar 

  23. E.J. Rapperport and C.S. Hartley: Trans. AIME, 1960, vol. 218, pp. 869–77.

    Google Scholar 

  24. M. Battaini, E.V. Pereloma, and C.H.J. Davies: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 276–85.

    Article  CAS  ADS  Google Scholar 

  25. P. Bastien and P. Pointu: J. Nucl. Mater., 1962, vol. 5, pp. 101–08.

    Article  CAS  ADS  Google Scholar 

  26. W. Taylor and A. Moore: J. Nucl. Mater., 1964, vol. 13, pp. 23–27.

    Article  CAS  ADS  Google Scholar 

  27. I.N. Frantsevich, V.A. Kravets, and K.V. Nazarenko: Poroshkovaya Met., 1975, vol. 8, pp. 89–93.

    Google Scholar 

  28. Y.B. Chun and S.K. Hwang: Acta Mater., 2008, vol. 56, pp. 369–79.

    Article  CAS  Google Scholar 

  29. J.P. Hirth and J. Lothe: Theory of Dislocations, McGraw-Hill, New York, NY, 1968.

    Google Scholar 

  30. E. Tenckhoff: Z. Metallkd., 1972, vol. 63, pp. 192–97.

    CAS  Google Scholar 

  31. L. Xiao and Y. Umakoshi: Mater. Sci. Eng. A, 2003, vol. 339, pp. 63–72.

    Article  Google Scholar 

  32. T.R. Cass: The Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon, Oxford, United Kingdom, 1970, pp. 459–77.

    Google Scholar 

  33. J.C. Williams and M.J. Blackburn: Phys. Status Solidi, 1968, vol. 25, pp. K1–K3.

    Article  CAS  ADS  Google Scholar 

  34. J.F. Stohr and J.P. Poirier: Phil. Mag., 1972, vol. 25, pp. 1313–29.

    Article  CAS  ADS  Google Scholar 

  35. S. Ando and H. Tonda: Mater. Trans. JIM, 2000, vol. 41, pp. 1188–91.

    CAS  Google Scholar 

  36. E.D. Levine: Trans. AIME, 1966, vol. 236, pp. 1558–65.

    CAS  Google Scholar 

  37. C.N. Tomé, P.J. Maudlin, R.A. Lebensohn, and G.C. Kaschner: Acta Mater., 2001, vol. 49, pp. 3085–96.

    Article  Google Scholar 

  38. J.J. Hauser and B. Chalmers: Acta Metall., 1961, vol. 9, pp. 802–18.

    Article  CAS  Google Scholar 

  39. J.P. Hirth: Metall. Trans., 1972, vol. 3, pp. 3047–67.

    Article  CAS  Google Scholar 

  40. R.M. Quimby, J.D. Mote, and J.E. Dorn: Trans. ASM, 1962, vol. 55, pp. 149–57.

    CAS  Google Scholar 

  41. A. Urakami, M. Meshii, and M.E. Fine: Acta Metall., 1970, vol. 18, pp. 87–99.

    Article  CAS  Google Scholar 

  42. F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. ASM, 1956, vol. 48, pp. 986–1001.

    Google Scholar 

  43. S.R. Agnew, J.A. Horton, and M.H. Yoo: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 851–58.

    CAS  ADS  Google Scholar 

  44. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.

    Article  CAS  Google Scholar 

  45. M.J. Philippe, F. Wagner, F.E. Mellab, C. Esling, and J. Wegria: Acta Metall. Mater., 1994, vol. 42, pp. 239–50.

    Article  CAS  Google Scholar 

  46. M.J. Philippe, M. Serghat, P.V. Houtte, and C. Esling: Acta Metall. Mater., 1995, vol. 43, pp. 1619–30.

    Article  CAS  Google Scholar 

  47. J.J. Fundenberger, M.J. Philippe, F. Wagner, and C. Esling: Acta Mater., 1997, vol. 45, pp. 4041–55.

    Article  CAS  Google Scholar 

  48. G. Proust, C.N. Tomé, and G.C. Kaschner: Acta Mater., 2007, vol. 55, pp. 2137–48.

    Article  CAS  Google Scholar 

  49. G.C. Kaschner, C.N. Tomé, I.J. Beyerlein, S.C. Vogel, D.W. Brown, and R.J. McCabe: Acta Mater., 2006, vol. 54, pp. 2887–96.

    Article  CAS  Google Scholar 

  50. Y.B. Chun, S.H. Yu, S.L. Semiatin, and S.K. Hwang: Mater. Sci. Eng. A, 2005, vol. 398, pp. 209–19.

    Article  Google Scholar 

  51. R.E. Reed-Hill and E.P. Dahlberg: Electrochem. Technol., 1966, vol. 4, pp. 303–07.

    CAS  Google Scholar 

  52. V. Ramachandran, D.H. Baldwin, and R.E. Reed-Hill: Metall. Trans., 1970, vol. 1, pp. 3011–18.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present work was performed under the auspices of the Korea Science and Engineering Foundation (KOSEF) through the 2009 Basic Science Program and was also supported by the Australian Research Council through the Centre of Excellence for Design in Light Metals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Hwang.

Additional information

Manuscript submitted March 6, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chun, Y.B., Battaini, M., Davies, C.H.J. et al. Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation with Active Slip Modes. Metall Mater Trans A 41, 3473–3487 (2010). https://doi.org/10.1007/s11661-010-0410-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0410-4

Keywords

Navigation