Skip to main content
Log in

Unveiling Hot Deformation Behavior and Dynamic Recrystallization Mechanism of 654SMO Super-Austenitic Stainless Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot deformation behavior and dynamic recrystallization (DRX) of super-austenitic stainless steel were investigated by uniaxial compression in the temperature ranges of 1223 to 1523 K and strain rate ranges of 0.01 to 0.1 s−1. The apparent activation energy for hot deformation was calculated to be 556 kJ/mol by the regression analysis of sine hyperbolic Arrhenius function. The processing map based on dynamic materials modeling was divided into different hot working domains. DRX fractions and grain sizes of each domain were evaluated to understand the relationship between dissipation efficiency, flow instability, and recrystallization. It was observed that the dynamic precipitation of sigma at low-temperature and low-strain rate domain inhibited the development of DRX leading to the flow instability in this domain. DRX at high-strain rate domains was predominantly governed by high nucleation resulting in a finer grain size. DRX at low-strain rate domains was controlled by growth of grains leading to high DRX fraction with larger grain size. By analyzing the DRX mechanisms of different domains, it was found that the softening of austenite was mainly achieved by discontinuous dynamic recrystallization, and continuous dynamic recrystallization only occurred at low-strain rate and high-temperature domain. Moreover, multiple twinning was first observed in dynamic recrystallization, which suggested that the twin boundaries could propagate not only by “growth accident” but also by interactions between pre-existed twin boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. B. Wallén, M. Liljas, and P. Stenvall: Mater. Corros., 1993, vol. 44, pp. 83–8.

    Article  Google Scholar 

  2. A. Zambon, P. Ferro, and F. Bonollo: Mater. Sci. Eng. A, 2006, vol. 424, pp. 117–27.

    Article  Google Scholar 

  3. S. Nagarajan and R. Nallaiyan: Corros. Sci., 2009, vol. 51, pp. 217–24.

    Article  CAS  Google Scholar 

  4. G.M. Rashed, W.A. Mohrez, A.A.M.A. EL-Hamid, and I.M. Ghayad: Key Eng. Mater., 2020, vol. 835, pp. 384–91.

    Article  Google Scholar 

  5. T. Koutsoukis, A. Redjaiemia, and G. Fourlaris: Mater. Sci. Eng. A, 2013, vol. 561, pp. 477–85.

    Article  CAS  Google Scholar 

  6. C. Escriva-Cerdan, E. Blasco-Tamarit, D.M. Garcia-Garcia, J. García-Antón, and A. Guenbour: Corros. Sci., 2012, vol. 56, pp. 114–22.

    Article  CAS  Google Scholar 

  7. H.B. Li, Z.H. Jiang, H. Feng, and S.C. Zhang: Int. J. Electrochem. Sci., 2015, vol. 10, pp. 4832–48.

    CAS  Google Scholar 

  8. H.B. Li, S.X. Yang, S.C. Zhang, B.B. Zhang, Z.H. Jiang, H. Feng, P.D. Han, and J.Z. Li: Mater. Des., 2017, vol. 118, pp. 207–17.

    Article  CAS  Google Scholar 

  9. E. Pu, W.J. Zheng, J.Z. Xiang, Z.G. Song, and J. Li: Mater. Sci. Eng. A, 2014, vol. 598, pp. 174–82.

    Article  CAS  Google Scholar 

  10. A. Momeni, K. Dehghani, H. Keshmiri, and G.R. Ebrahimi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1605–11.

    Article  Google Scholar 

  11. A. De Hghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664–72.

    Article  Google Scholar 

  12. S. Wang, M. Zhang, H. Wu, and B. Yang: Mater. Charact., 2016, vol. 118, pp. 92–101.

    Article  CAS  Google Scholar 

  13. S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, and B. Raj: Philos. Mag., 2008, vol. 88, pp. 883–97.

    Article  CAS  Google Scholar 

  14. S. Mandal, M. Jayalakshmi, and A.K. Bhaduri: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5645–56.

    Article  CAS  Google Scholar 

  15. S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1062–72.

    Article  CAS  Google Scholar 

  16. A. Mirzaei, A. Zarei-Hanzaki, and H.R. Abedi: Metall. Mater. Trans. A, 2016, vol. 47, pp. 2037–48.

    Article  CAS  Google Scholar 

  17. K. Arun Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V. Subramanya Sarma: Mater Des., 2017, vol. 115, pp. 262–75.

    Article  Google Scholar 

  18. Y. Han, H. Wu, W. Zhang, D. Zou, G. Liu, and G. Qiao: Mater. Des., 2015, vol. 69, pp. 0261–3069.

    Article  Google Scholar 

  19. Y. Hao, J. Li, and W. Liu: J. Iron Steel Res. Int., 2019, vol. 26, pp. 1080–87.

    Article  CAS  Google Scholar 

  20. L. Wang, C. Chen, Z. Li, Z. Wang, B. Lv, and F. Zhang: J. Mater. Res. Technol., 2021, vol. 15, pp. 6769–85.

    Article  CAS  Google Scholar 

  21. U. Lee, B. Straumal, and N. Park: Mater. Sci. Eng. A, 2021, vol. 804, pp. 0921–5093.

    Article  Google Scholar 

  22. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 585, pp. 71–85.

    Article  CAS  Google Scholar 

  23. S.C. Zhang, H.B. Li, Z.H. Jiang, Z.X. Li, J.X. Wu, B.B. Zhang, F. Duan, H. Feng, and H.C. Zhu: J. Mater. Sci. Technol., 2020, vol. 42, pp. 143–55.

    Article  Google Scholar 

  24. C.T. Yang, W.W. Dou, C.C. Pittman, E.Z. Zhou, D.K. Xu, H.B. Li, Y. Lekbach, and F.H. Wang: Mater. Today Commun., 2020, vol. 25, pp. 2352–4928.

    Google Scholar 

  25. L.H. Liao, J.Y. Li, and Z.X. Zhao: J Mater. Sci., 2022, vol. 57, pp. 4771–88.

    Article  CAS  Google Scholar 

  26. R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–17.

    Article  CAS  Google Scholar 

  27. M.C. Mataya and V.E. Sackschewsky: Metall. Mater. Trans. A, 1994, vol. 25, p. 2737.

    Article  Google Scholar 

  28. D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  CAS  Google Scholar 

  29. R.P. Reed and R.E. Schramm: Relationship between stacking-fault energy and x-ray measurements of stacking-fault probability and microstrain. J. Appl. Phys., 1974, vol. 45, pp. 4705–05.

    Article  CAS  Google Scholar 

  30. R.E. Schramm and R.P. Reed: Metall. Mater. Trans. A, 1975, vol. 6, p. 1345.

    Article  Google Scholar 

  31. D. Balzar: 2006. http://www.du.edu/%7ebalzar/breadth.htm.

  32. B.E. Warren: X-ray Diffraction, Dover Publications Inc., New York, 1990, pp. 301–305.

    Google Scholar 

  33. S. Kim and Y.C. Yoo: Mater. Sci. Eng. A, 2001, vol. 311, pp. 108–13.

    Article  Google Scholar 

  34. B. Bradaskja, B. Pirnar, M. Fazarinc, and P. Fajfar: Steel Res. Int., 2011, vol. 82, pp. 346–51.

    Article  CAS  Google Scholar 

  35. C.M. Sellars and W.J. McTegart: On the mechanism of hot deformation. Acta Metall., 1966, vol. 14, pp. 1136–38.

    Article  CAS  Google Scholar 

  36. H.J. McQueen and N.D. Ryan: Mater. Sci. Eng. A, 2002, vol. 322, pp. 43–63.

    Article  Google Scholar 

  37. C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22–32.

    Article  Google Scholar 

  38. Y.C. Lin and X.M. Chen: Mater. Des., 2011, vol. 32, pp. 1733–59.

    Article  CAS  Google Scholar 

  39. A.D. Manshadi, M.R. Barnett, and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1359–70.

    Article  Google Scholar 

  40. E. Wahabi, J.M. Cabrera, and J.M. Prado: Mater. Sci. Eng. A, 2003, vol. 343, pp. 116–25.

    Article  Google Scholar 

  41. S. Mandal, A.K. Bhaduri, and V.S. Sarma: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2056–68.

    Article  CAS  Google Scholar 

  42. D. Samantaray, S. Mandal, V. Kumar, S.K. Albert, A.K. Bhaduri, and T. Jayakumar: Mater. Sci. Eng. A, 2012, vol. 552, pp. 236–44.

    Article  CAS  Google Scholar 

  43. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.

    Article  CAS  Google Scholar 

  44. A. Momeni and K. Dehghani: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5467–73.

    Article  Google Scholar 

  45. S.F. Medina and C.A. Hernandez: Acta Mater., 1996, vol. 44, pp. 149–54.

    Article  CAS  Google Scholar 

  46. D. Samantaray, S. Mandal, and A.K. Bhaduri: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5204–11.

    Article  CAS  Google Scholar 

  47. S. Venugopal, P. Venugopal, and S.L. Mannan: Mater. Proc. Technol., 2001, vol. 202, pp. 201–15.

    Article  Google Scholar 

  48. Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1998, vol. 43, pp. 243–58.

    Article  CAS  Google Scholar 

  49. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 1996, vol. 27, pp. 119–26.

    Article  Google Scholar 

  50. D.P. Field, L.T. Bradford, M.W. Nowell, and T.M. Lillo: Acta Mater., 2007, vol. 55, pp. 4233–41.

    Article  CAS  Google Scholar 

  51. F.N. Fritsch and R.E. Carlson: J. Numer. Anal., 1980, vol. 17, pp. 238–46.

    Article  Google Scholar 

  52. L. Wang, F. Liu, J.J. Cheng, Q. Zuo, and C.F. Chen: J. Alloys Compd., 2015, vol. 623, pp. 69–78.

    Article  CAS  Google Scholar 

  53. Q.W. Zhou, J.W. Liu, and Y. Gao: Mater. Des., 2019, vol. 181, p. 108056.

    Article  CAS  Google Scholar 

  54. W. Wang, F. Brisset, A.L. Helbert, D. Solas, and I. Drouelle: Mater. Sci. Eng. A, 2014, vol. 589, pp. 112–18.

    Article  CAS  Google Scholar 

  55. F.C. Liu and T.W. Nelson: Mater. Charact., 2018, vol. 140, pp. 39–44.

    Article  CAS  Google Scholar 

  56. S.C. Zhang, Z.H. Jiang, H.B. Li, B. Zhang, S. Fan, Z. Li, H. Feng, and H. Zhu: Mater. Charact., 2018, vol. 137, pp. 244–55.

    Article  CAS  Google Scholar 

  57. T. Koutsoukis, A. Redjaïmia, and G. Fourlaris: Solid State Phenom., 2011, vol. 172–174, pp. 493–98.

    Article  Google Scholar 

  58. W. Roberts and B. Ahlblom: Acta Metall., 1978, vol. 26, pp. 801–13.

    Article  CAS  Google Scholar 

  59. I. Yakubtsov and M. Niewczas: Mater. Sci. Forum, 2007, vol. 706–709, p. 1285.

    Google Scholar 

  60. D. Jorge-Badiola, A. Iza-Mendia, and I. Gutierrez: Mater. Sci. Eng. A, 2005, vol. 394, pp. 445–54.

    Article  Google Scholar 

  61. D. Jorge-Badiola, A. Iza-Mendia, and I. Gutiérrez: J. Microsc., 2010, vol. 228, pp. 373–83.

    Article  Google Scholar 

  62. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Ltd, Oxford, 2004, pp. 215–216.

    Book  Google Scholar 

  63. H. Beladi, P. Cizek, and P.D. Hodgson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1175–89.

    Article  CAS  Google Scholar 

  64. F.M. Qin, H. Zhu, Z.X. Wang, X.D. Zhao, W.W. He, and H.Q. Chen: Mater. Sci. Eng. A, 2017, vol. 684, pp. 634–44.

    Article  CAS  Google Scholar 

  65. H.Z. Niu, F.T. Kong, Y.Y. Chen, and F. Yang: J. Alloys Compd., 2011, vol. 509, pp. 10179–84.

    Article  CAS  Google Scholar 

  66. S. Gourdet and F. Montheillet: Mater. Sci. Eng. A, 2000, vol. 283, pp. 274–88.

    Article  Google Scholar 

  67. Y.Y. Zong, D.S. Wen, Z.Y. Liu, and D.B. Shan: Mater. Des., 2016, vol. 91, pp. 321–30.

    Article  CAS  Google Scholar 

  68. S. Gourdet and F. Montheillet: Acta Mater., 2003, vol. 51, pp. 2685–99.

    Article  CAS  Google Scholar 

  69. J. Li, X. Wu, and L. Cao: Mater. Charact., 2021, vol. 173, 110976.

    Article  CAS  Google Scholar 

  70. B. Xie, B. Zhang, and Y. Ning: J. Alloys Compd., 2019, vol. 786, pp. 636–47.

    Article  CAS  Google Scholar 

  71. D.G. Cram, H.S. Zurob, and Y.J.M. Brechet: Acta Mater., 2009, vol. 57, pp. 5218–28.

    Article  CAS  Google Scholar 

  72. J.E. Bailey and P.B. Hirsch: Proc. R. Soc. A, 1962, vol. 267, pp. 11–30.

    CAS  Google Scholar 

  73. H. Gleiter: Acta Metall., 1969, vol. 17, pp. 421–1428.

    Google Scholar 

  74. H. Shi, K. Chen, Z. Shen, J.Q. Wu, X.P. Dong, L.T. Zhang, and A.D. Shan: Mater. Charact., 2015, vol. 110, pp. 52–59.

    Article  CAS  Google Scholar 

  75. C.S. Pande, M.A. Imam, and B.B. Rath: Metall. Trans. A, 1990, vol. 21A, pp. 2891–96.

    Article  CAS  Google Scholar 

  76. C. Cayron: Acta Mater., 2011, vol. 59, pp. 252–62.

    Article  CAS  Google Scholar 

  77. T.G. Liu, S. Xia, B. Wang, Q. Bai, B. Zhou, and C. Su: Mater. Des., 2016, vol. 112, pp. 442–48.

    Article  CAS  Google Scholar 

  78. S. Xia, B.X. Zhou, and W.J. Chen: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3016–30.

    Article  CAS  Google Scholar 

  79. V. Randle and G. Owen: Acta Mater., 2006, vol. 54, pp. 1777–83.

    Article  CAS  Google Scholar 

  80. G. Palumbo and K.T. Aust: Acta Metall. Mater., 1990, vol. 38, pp. 2343–52.

    Article  CAS  Google Scholar 

  81. S.G. Chowdhury, S. Datta, B.R. Kumar, P.K. De, and R.N. Ghosh: Mater. Sci. Eng. A, 2007, vol. 443, pp. 114–19.

    Article  Google Scholar 

  82. N. Saenarjhan, J.H. Kang, and S.J. Kim: Mater. Sci. Eng. A, 2019, vol. 742, pp. 608–16.

    Article  CAS  Google Scholar 

  83. J. Talonen and H. Hnninen: Acta Mater., 2007, vol. 5, pp. 6108–18.

    Article  Google Scholar 

  84. Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang, and L. Zuo: Mater. Sci. Eng. A, 2012, vol. 552, pp. 514–22.

    Article  CAS  Google Scholar 

  85. A.S. Hamada, L.P. Karjalainen, R.D.K. Misra, and J. Talonen: Mater. Sci. Eng. A, 2013, vol. 559, pp. 336–44.

    Article  CAS  Google Scholar 

  86. M. Moallemi, A. Zarei-Hanzaki, and A. Mirzaei: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2335–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge support from Science and Technology Major Project of Shanxi Province (20191102006) and National Natural Science Foundation of China (Grant No. U1806220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulai Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Zhao, Z., Zhang, W. et al. Unveiling Hot Deformation Behavior and Dynamic Recrystallization Mechanism of 654SMO Super-Austenitic Stainless Steel. Metall Mater Trans A 54, 2554–2575 (2023). https://doi.org/10.1007/s11661-023-07019-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07019-7

Navigation