Skip to main content

Advertisement

Log in

Mechanical Strength and Electrical Conductivity of Cu–In Solid Solution Alloy Wires

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Conductive spring wires for application in electrical components require high strength, high electrical conductivity, and convenient manufacturability. Copper–indium (Cu–In) solid solution alloys are suitable candidates for such wires because they exhibit effective solid solution strengthening without significantly decreasing the conductivity. Herein, we systematically investigate the microstructure of Cu–In alloy wires fabricated by severe drawing, along with their mechanical and electrical properties. During the initial drawing stages, high-density deformation twins are generated in the Cu–In alloy because the In solute efficiently reduces the stacking fault energy (SFE) of the Cu matrix. These deformation twins promote grain refinement during subsequent drawing. The Cu–5.0 at. pct In alloy wire, drawn severely to an equivalent strain of 4.61, possesses ultrafine grains measuring 60 to 80 nm with a high density of dislocations, resulting in excellent yield strength, tensile strength, and conductivity of 1280 MPa, 1340 MPa, and 24 pct relative to the International Annealing Cu Standard, respectively. These properties were comparable to those of age-hardenable Cu–Be and Cu–Ti alloys; thus, our results demonstrate that tuning the In content of the Cu matrix to reduce the SFE and optimizing the deformation strain to refine the grain size significantly improves the performance of alloy wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Guoliang, W. Qiangsong, M. Xujun, X. Baiqing, and P. Lijun: Mater. Sci. Eng. A, 2012, vol. 558, pp. 326–30.

    Article  Google Scholar 

  2. Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, and Z. Xiao: Intermetallics, 2013, vol. 42, pp. 77–84.

    Article  CAS  Google Scholar 

  3. S. Semboshi, Y. Kaneno, T. Takasugi, and N. Masahashi: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4956–65.

    Article  Google Scholar 

  4. S.Z. Han, E.-A. Choi, S.H. Lim, S. Kim, and J. Lee: Prog. Mater. Sci., 2021, vol. 117, p. 100720.

    Article  CAS  Google Scholar 

  5. S. Semboshi, R. Hariki, T. Shuto, H. Hyodo, Y. Kaneno, and N. Masahsshi: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 4934–45.

    Article  Google Scholar 

  6. K. Maki, Y. Ito, H. Matsunaga, and H. Mori: Scripta Mater., 2013, vol. 68, pp. 777–80.

    Article  CAS  Google Scholar 

  7. Y. Li, Z. Xiao, Z. Li, Z. Zhou, Z. Yang, and Q. Lei: J. Alloys Compd., 2017, vol. 723, pp. 1162–70.

    Article  CAS  Google Scholar 

  8. N. Tsuji, T. Toyoda, Y. Minamino, Y. Koizumi, T. Yamane, M. Komatsu, and M. Kiritani: Mater. Sci. Eng. A, 2003, vol. 350, pp. 108–16.

    Article  Google Scholar 

  9. Y. Koizumi, M. Ueyama, N. Tsuji, Y. Minamino, and K. Ota: J. Alloys Compd., 2003, vol. 30, pp. 47–51.

    Article  Google Scholar 

  10. S. Riedel, J. Röber, and T. Geßner: Microelectron. Eng., 1997, vol. 33, pp. 165–72.

    Article  CAS  Google Scholar 

  11. H. Yoshinaga: Phys. Status Solidi, 1966, vol. 18, pp. 625–36.

    Article  CAS  Google Scholar 

  12. J.W. Rutter and J. Reekie: Phys. Rev., 1950, vol. 78, pp. 70–71.

    Article  Google Scholar 

  13. Y.H. Zhau, X.Z. Liao, Y.T. Zhu, Z. Horita, and T.G. Langdon: Mater Sci. Eng. A, 2005, vol. 410–411, pp. 188–93.

    Article  Google Scholar 

  14. L. Balogh, T. Ungar, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu, and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 809–20.

    Article  CAS  Google Scholar 

  15. Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu: Mater. Sci. Eng. A, 2008, vol. 15, pp. 123–29.

    Article  CAS  Google Scholar 

  16. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang: Acta Mater., 2009, vol. 57, pp. 1586–1601.

    Article  CAS  Google Scholar 

  17. R. Kumar, S.M. Dasharath, P.C. Kang, C.C. Koch, and S. Mula: Mater. Des., 2015, vol. 67, pp. 637–43.

    Article  CAS  Google Scholar 

  18. B.B. Straumal, A.R. Kilmametov, G.A. Lopez, I. Lopez-Ferreno, M.L. No, J. San Juan, H. Hahn, and B. Baretzky: Acta Mater., 2017, vol. 125, pp. 274–85.

    Article  CAS  Google Scholar 

  19. J.O. Linde: Helv. Phys. Acta, 1968, vol. 41, pp. 1007–15.

    CAS  Google Scholar 

  20. H.W. King: J. Mater. Sci., 1966, vol. 1, pp. 79–90.

    Article  CAS  Google Scholar 

  21. P.C.J. Gallagher: Metall. Trans., 1970, vol. 1, pp. 2429–61.

    Article  CAS  Google Scholar 

  22. Z.J. Zhang, Q.Q. Duan, X.H. An, S.D. Wu, G. Yang, and Z.F. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4259–67.

    Article  Google Scholar 

  23. H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger, J. Eckert, R.O. Scattergood, and C.C. Koch: Mater. Sci. Eng. A, 2011, vol. 529, pp. 230–36.

    Article  CAS  Google Scholar 

  24. A. Rohatgi, K.S. Vecchio, and G.T. Gray III.: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 135–45.

    Article  CAS  Google Scholar 

  25. N.M. Chavan, P.S. Phani, M. Ramakrishna, L. Venkatesh, P. Pant, and G. Sundararajan: Mater. Sci. Eng. A, 2021, vol. 814, p. 141242.

    Article  CAS  Google Scholar 

  26. Z. Bahari, E. Dichi, B. Legendre, and J. Dugué: Thermochim. Acta, 2003, vol. 401, pp. 131–38.

    Article  CAS  Google Scholar 

  27. S. Semboshi and T.J. Konno: J. Mater. Res., 2008, vol. 23, pp. 473–77.

    Article  CAS  Google Scholar 

  28. The Japanese Institute of Metals and Materials (ed): Metals Data book, 4th ed. Maruzen Corporation, Tokyo, 2017, p. 43. (Japanese).

    Google Scholar 

  29. T.H. Davis and J.A. Rayne: Phys. Rev. B, 1972, vol. 6, pp. 2931–42.

    Article  CAS  Google Scholar 

  30. J. Miyake and M.E. Fine: Acta Metall. Mater., 1992, vol. 40, pp. 733–41.

    Article  CAS  Google Scholar 

  31. K. Nakanishi and H. Suzuki: Trans. JIM, 1974, vol. 15, pp. 435–40.

    Article  CAS  Google Scholar 

  32. L. Cizek, P. Kratochochvil, and B. Smola: J. Mater. Sci., 1974, vol. 9, pp. 1517–20.

    Article  CAS  Google Scholar 

  33. A. Studies, P.O. Box, and P.H. Uk: J. Mater. Sci., 1993, vol. 28, pp. 2557–76.

    Article  Google Scholar 

  34. K.A. Weidenmann, R. Tavangar, and L. Weber: Mater. Sci. Eng. A, 2009, vol. 523, pp. 226–34.

    Article  Google Scholar 

  35. N. Khobragade, K. Sikdar, B. Kumar, S. Bera, and D. Roy: J. Alloys Compd., 2019, vol. 776, pp. 123–32.

    Article  CAS  Google Scholar 

  36. Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavernia, S.P. Ringer, Z. Horita, T.G. Langdone, and Y.T. Zhu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4959–66.

    Article  Google Scholar 

  37. C.J. Barr and K. Xia: J. Mater. Sci. Technol., 2021, vol. 82, pp. 57–68.

    Article  CAS  Google Scholar 

  38. C.X. Huang, W. Hu, G. Yang, Z.F. Zhang, S.D. Wu, Q.Y. Wang, and G.G. Gottstein: Mater. Sci. Eng. A, 2012, vol. 556, pp. 638–47.

    Article  CAS  Google Scholar 

  39. S. Semboshi, Y. Kaneno, T. Takasugi, S.Z. Han, and N. Masahashi: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 1389–96.

    Article  Google Scholar 

  40. L. Lu, Y.F. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.

    Article  CAS  Google Scholar 

  41. Y. Miyajima, S. Okubo, H. Abe, H. Okumura, T. Fujii, S. Onaka, and M. Kato: Mater. Charact., 2015, vol. 104, pp. 101–06.

    Article  CAS  Google Scholar 

  42. C. Wang, F. Li, L. Wei, Y. Yang, and J. Dong: Mater. Sci. Eng. A, 2013, vol. 571, pp. 95–102.

    Article  CAS  Google Scholar 

  43. Y.Z. Tian, Y.P. Ren, S. Gao, R.X. Zheng, J.H. Wang, H.C. Pan, Z.F. Zhang, N. Tsuji, and G.W. Qin: J. Mater. Sci. Technol., 2020, vol. 48, pp. 31–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. Nagasako, Mr. S. Ito, and Mr. E. Aoyagi of the Institute for Materials Research (IMR) of Tohoku University for their assistance with the experiments.

Funding

This work was supported by a Cooperative Program of Collaborative Research and Development Center for Advanced Materials (CRDAM) in IMR (No. 202112-CRKKE-0410). The authors gratefully acknowledge financial support from the Japan Society for the Promotion of Science via a Grant-in-Aid for Scientific Research (B) (Nos. 18H01743 and 22H01825) and from the Japan Cu and Brass Association.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Semboshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Hall–Petch Relationship for Cu–5.0 At. Pct In Alloy

Appendix: Hall–Petch Relationship for Cu–5.0 At. Pct In Alloy

We surveyed the relationship between the grain size and yield strength of the Cu–5.0 at. pct In alloy with a single Cu solid solution (Cuss) phase. The Cu–5.0 at. pct In alloys were groove-rolled to a rod shape (with a 3.0 mm diameter) and heat-treated within a Cuss single-phase region at 500 °C for 1 and 10 minutes, at 600 °C for 10 minutes, and at 700 °C for 10 minutes to obtain Cuss single phase alloys with equiaxed grain microstructures with equivalent diameters of 7, 8, 20, and 100 μm. Figure A-1 shows the relationship between the grain size and yield strength of the Cu–5.0 at. pct In alloy, together with that of pure Cu.[43] From the yield strength plots of the Cu–5.0 at. pct In alloy, Δσygb can be approximated using Eq. [A-1]:

$$ \Delta \sigma^{{\text{y}}}_{{{\text{gb}}}} = 123 + 190/d_{{\text{g}}}^{1/2} , $$
(A-1)

where Δσygb denotes the increase in the yield strength caused by the GBs, and dg represents the grain size.

Fig. A-1
figure 14

Relationship between grain size and yield strength in Cu–5.0 at. pct In alloy, together with that in pure Cu

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, Y., Semboshi, S., Masahashi, N. et al. Mechanical Strength and Electrical Conductivity of Cu–In Solid Solution Alloy Wires. Metall Mater Trans A 54, 928–938 (2023). https://doi.org/10.1007/s11661-022-06938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06938-1

Navigation