Skip to main content
Log in

Fabrication of a Cu/TiNi Composite with High Air-Tightness and Low Thermal Expansion

  • Mechanical Properties of Metastable Materials Containing Strong Disorder
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper alloys exhibit a positive thermal expansion effect, which is undesirable to materials as in service, while TiNi composite materials exhibit negative thermal expansion. In this study, we fabricated a new high-density Cu/TiNi composite with low thermal expansion through electroless deposition and powder metallurgy. Mixed powders of 15% electroless deposited Cu-TiNi composite powders, and 85% prepared Cu powders were cold extruded, vacuum hot press heat-treated, and hot compressed at 900°C for 2 h. The coefficients of thermal expansion of the Cu/TiNi composite at 100°C, 200°C, and 300°C were 13.99 × 10−6/K, 17.28 × 10−6/K, and 17.72 × 10−6/K, respectively. The fabricated Cu/TiNi composite materials showed good air-tightness and negative thermal expansion, so have bright prospects in lead frames and other electrical and electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Derby, Y.C. Cui, J. Baldwin, R. Arroyave, M.J. Demkowicz, and A. Misra, Mater. Res. Lett. 7, 1 (2019).

    Article  Google Scholar 

  2. Q. Zhang, G.H. Wu, L.T. Jiang, and B.F. Luan, Compos. A. 34, 1023 (2003).

    Article  Google Scholar 

  3. Y. Nerthigan, A.K. Sharma, S. Pandey, and H.F. Wu, Microchim. Acta 186, 130 (2019).

    Article  Google Scholar 

  4. G.S. Jiang, Z.F. Wang, and H. Wu, Powder. Metall. Technol. 25, 126 (2007).

    Google Scholar 

  5. Y.G. Chen and B.X. Liu, J. Alloy. Compd. 261, 217 (1997).

    Article  Google Scholar 

  6. Th. Schubert, B. Trindade, T. Weißgarber, and B. Kieback, Mater. Sci. Eng. A 475, 39 (2008).

    Article  Google Scholar 

  7. H.K. Kang and S.B. Kang, Surf. Coat. Technol. 182, 124 (2004).

    Article  Google Scholar 

  8. J.G. Cheng, C.P. Lei, E.T. Xiong, Y. Jiang, and Y.H. Xia, J. Alloy. Compd. 421, 146 (2006).

    Article  Google Scholar 

  9. M. Rosinski, E. Fortuna, A. Michalski, Z. Pakiela, and K.J. Kurzydlowski, Fusion Eng. Des. 82, 2621 (2007).

    Article  Google Scholar 

  10. J.F. Li, Z.Q. Zheng, X.W. Li, and Z.W. Peng, Mater. Des. 30, 314 (2009).

    Article  Google Scholar 

  11. H. Holzer and D.C. Dunand, J. Mater. Res. 14, 780 (1999).

    Article  Google Scholar 

  12. M. Cetinkol, A.P. Wilkinson, and C. Lind, Phys. Rev. B 79, 224118 (2009).

    Article  Google Scholar 

  13. J.S.O. Evans, J. Chem. Soc. Dalton Trans. 1, 3317 (1999).

    Article  Google Scholar 

  14. X.W. Li, Z.Q. Zheng, J.F. Li, S.C. Li, and X.Y. Wei, Rare Met. Mater. Eng. 36, 879 (2007).

    Google Scholar 

  15. K.A. Jafar, D. Antonin, and E. Gunther, Acta Mater. 50, 4255 (2002).

    Article  Google Scholar 

  16. V. Kolomytsev, V. Nemoshkalenko, YuN Koval, A. Kozlov, B. Mordyuk, G. Prokopenko, P. Ochin, and R. Portier, J. de Phys. IV (Proceedings) 112, 1159 (2003).

    Article  Google Scholar 

  17. S. Hao, L. Cui, Z. Chen, D. Jiang, Y. Shao, J. Jiang, M. Du, Y. Wang, D.E. Brown, and Y. Ren, Adv. Mater. 25, 1199 (2013).

    Article  Google Scholar 

  18. S.S. Joshi, S.F. Patil, V. Iyer, and S. Mahumuni, Nanostruct. Mater. 10, 1135 (1998).

    Article  Google Scholar 

  19. X.J. Yan, D.Z. Yang, and X.P. Liu, Mater. Charact. 58, 262 (2007).

    Article  Google Scholar 

  20. B.Y. Li, L.J. Rong, and Y.Y. Li, J. Mater. Res. 13, 2847 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National MCF Energy R&D Program of China (2018YFE0306100), the National Natural Science Foundation of China (51901250), and the National Natural Science Foundation of Hunan Province (2019JJ50765).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, T., Li, Z., Xiao, Z. et al. Fabrication of a Cu/TiNi Composite with High Air-Tightness and Low Thermal Expansion. JOM 72, 883–888 (2020). https://doi.org/10.1007/s11837-019-03930-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-019-03930-w

Navigation