Skip to main content
Log in

Effect of Composition on the Strength and Electrical Conductivity of Cu-Ti Binary Alloy Wires Fabricated by Aging and Intense Drawing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The strength and electrical conductivity of Cu-Ti alloy wires fabricated by over-aging and intense drawing were investigated as a function of Ti content (2.7 to 4.3 at. pct). The microstructure of all over-aged Cu-Ti alloys before drawing showed mainly coarse cellular components laminating the plates of a terminal Cu solid solution and a β-Cu4Ti intermetallic compound precipitated discontinuously by grain boundary reactions. The volume fraction of β-Cu4Ti plates increased with Ti content, although the compositions of the two phases remained unchanged. When the over-aged alloys were drawn to the same deformation strain, the hardness and tensile strength of the wires increased monotonically with Ti content due to strain-induced strengthening; a high volume fraction of hard β-Cu4Ti fibers formed from laminating plates during drawing promoted a high dislocation density in the matrix. The electrical conductivity of the wires decreased gradually with Ti content due to the higher volume fraction of β-Cu4Ti fibers and due decomposition of the fibers during drawing. The overall performance of the Cu-Ti alloy wires improved as the Ti content increased and was superior to that of conventional Cu-Ti alloy wires fabricated by peak-aging and drawing, and to that of commercial Cu-Be alloy wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Datta and W.A. Soffa: Acta Metall., 1976, vol. 24, pp. 987–1001.

    Article  Google Scholar 

  2. S. Nagarjuna, M. Srinivas, K. Balasubramanian, and D. S. Sarma: Acta Metall., 1996, vol. 44, pp. 2285–2293.

    Google Scholar 

  3. A.A. Hameda and L. Blaz: Mater. Sci. Eng. A, 1998, vol. 254, pp. 83–89.

    Article  Google Scholar 

  4. C. Borchers: Philos. Mag. A., 1999, vol. 79, pp.537–547.

    Article  Google Scholar 

  5. W.A. Soffa and D. E. Laughlin: Prog. Mater. Sci., 2004, vol. 49, pp. 347–366.

    Article  Google Scholar 

  6. D. Bozic, J. Stasic, J. Ruzic, M. Vilotijevic, and V. Rajkovic: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8139–8144.

    Article  Google Scholar 

  7. M. Sobhani, A. Mirhabibi, H. Arabi, and R.M.D. Brydson: Mater. Sci. Eng. A, 2013, vol. 577, pp. 16–22.

    Article  Google Scholar 

  8. J.A. Cornie, A. Datta, and W.A. Soffa: Metal. Trans., 1973, vol. 4, pp. 727–733.

    Article  Google Scholar 

  9. D.E. Laughlin and J.W. Cahn: Acta Metall., 1975, vol. 23, pp. 329–339.

    Article  Google Scholar 

  10. L.A. Nesbit and D.E. Laughlin: Acta Metall., 1978, vol. 26, pp. 815–825.

    Article  Google Scholar 

  11. W.A. Soffa and D.E. Laughlin: Acta Metall., 1989, vol. 37, pp. 3019–3028.

    Article  Google Scholar 

  12. R. Markandeya, S. Nagarjuna, and D.S. Sarma: Mater. Sci. Eng. A, 2004, vol. 371, pp. 291–305.

    Article  Google Scholar 

  13. I.S. Balta, A. Laik, G.B. Kale, G.K. Dey, and U.D. Kulkami: Mater. Sci. Eng. A, 2005, vol. 402, pp. 118–125.

    Article  Google Scholar 

  14. S. Semboshi, T. Nishida, H. Numakura, T. Al-Kassab, and R. Kirchheim: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2136–2143.

    Article  Google Scholar 

  15. S. Semboshi, S. Sato, M. Ishikuro, K. Wagatsuma, A. Iwase, and T. Takasugi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3401–3411.

    Article  Google Scholar 

  16. L. Si, L. Zhou, X. Zhu, L. Sanhua, S. Leinuo, and D. Qiyi: Mater. Sci. Eng. A, 2016, vol. 650, pp. 345–353.

    Article  Google Scholar 

  17. H. Wei, Y. Cui, H. Cui, Y. Wei, and L. Hou: Mater. Sci. Eng. A, 2017, vol. 707, pp. 392–398.

    Article  Google Scholar 

  18. S. Semboshi, S. Amano, J. Fu, A. Iwase, and T. Takasugi: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1501–1511.

    Article  Google Scholar 

  19. S. Semboshi, Y. Kaneno, T. Takasugi, and N. Masahashi: Metall. Mater. Trans. A, 2018, vol. 49, pp. 4956–4964.

    Article  Google Scholar 

  20. R.C. Ecob, J.V. Bee, and B. Ralph: Phys. Status Solidi, 1979, vol. 52A, pp. 201–210.

    Article  Google Scholar 

  21. R.C. Ecob, J.V. Bee, and B. Ralph: Metall. Mater. Trans. A, 1980, vol. 11A, pp. 1407–1414.

    Article  Google Scholar 

  22. R.W. Fonda and G.J. Shiflet: Scr. Metall., 1990, vol. 24, pp. 2259–2262.

    Article  Google Scholar 

  23. R.W. Fonda and G.J. Shiflet: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2507–2518.

    Article  Google Scholar 

  24. A.M. Elwazri, P. Wanjara, and S. Yue: Mater. Sci. Eng. A, 2005, vol. 404, pp. 91–98.

    Article  Google Scholar 

  25. S.W. Joung, U.G. Kang, S.P. Hong, Y.W. Kim, and W.J. Nam: Mater. Sci. Eng. A, 2013, vol. 586, pp. 171–177.

    Article  Google Scholar 

  26. Y. Li, D. Raabe, M. Herbig, P.P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, and R. Kirchheim: Phys. Rev. Lett., 2014, vol. 113, pp. 106104.

    Article  Google Scholar 

  27. A. Durgaprasad, S. Giri, S. Lenkaa, S. Kundu, S. Mishra, S. Chandra, R.D. Doherty, and I. Samajdra: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 4583–4597.

    Article  Google Scholar 

  28. C. Borchers, and R. Kirchheim: Prog. Mater.Sci., 2016, vol. 82, pp. 405–444.

    Article  Google Scholar 

  29. D. Nikas, X.D. Zhang, and J. Ahlstrom: Mater. Sci. Eng. A, 2018, vol. 737, pp. 341–347.

    Article  Google Scholar 

  30. Y. Sakai and H.-J. Schneider-Muntau: Acta Mater., 1997, vol. 45, pp. 1017–1023.

    Article  Google Scholar 

  31. Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4331–4336.

    Article  Google Scholar 

  32. C. Biselli and D.C. Morris: Acta Mater., 1996, vol. 44, pp. 493–504.

    Article  Google Scholar 

  33. Q. Feng, L. Song, Y. Zeng, Y. Fang, L. Meng, J. Liu, and H. Wang: J. Alloys Compd., 2015, vol. 640, pp. 45–50.

    Article  Google Scholar 

  34. J.Y. Brun, S.J. Hamar-Thibault, and C.H. Allibert: Z. Metallk., 1983, vol. 74, pp. 525–529.

    Google Scholar 

  35. H. Doi, S. Suzuki, K. Mimura, K. Isshiki, and Y. Waseda: J. Japan Inst. Met., 2004, vol. 68, pp. 78–81.

    Article  Google Scholar 

  36. S. Semboshi and T.J. Konno: J. Mater. Res., 2008, vol. 23, pp. 473–477.

    Article  Google Scholar 

  37. M.A. Turchanin, P.G. Agraval, and A.R. Abdulov: Powder Metall. Met. Ceram., 2008, vol. 47, pp. 344–360.

    Article  Google Scholar 

  38. S. Semboshi, M. Ishikuro, S. Sato, K. Wagatsuma, and T. Takasugi: Mater. Charact., 2013, vol. 82, pp. 23–31.

    Article  Google Scholar 

  39. S. Chen, Y.H. Duan, B. Huang, and W.C. Hu: Philos. Mag., 2015, vol. 95, pp. 3535–53.

    Article  Google Scholar 

  40. R. Landauer: J. Appl. Phys., 1952, vol. 23, pp. 779–784.

    Article  Google Scholar 

  41. J. Miyake and M.E. Fine: Acta Metall., 1992, vol. 40, pp. 733–741.

    Article  Google Scholar 

  42. S. Suzuki, K. Hirabayashi, H. Shibata, K. Mimura, M. Isshiki, and Y. Waseda: Scr. Mater., 2003, vol. 48, pp. 431–435.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. I. Nakayoshi of Tokusen Kogyo Co. for sample preparation. The authors are grateful to Dr. E.A. Choi of the Korea Institute of Materials Science for useful discussions and comments. The authors also thank Dr. M. Ishikuro, Mr. E. Aoyagi, Mr. I. Nagano, Ms. Y. Matsuda, and Mr. Y. Kadoi of the Institute for Materials Research (IMR) of Tohoku University and Professor Iwase and Mr. T. Teshima of Osaka Prefecture University for their experimental assistance. This work was supported by a cooperative program of Collaborative Research and Development Center for Advanced Materials (CRDAM) in IMR (No. 18G0421). We gratefully acknowledge the financial support from the Japan Society for the Promotion of Science via a Grant-in-Aid for Scientific Research (B) (No. 18H01743) and from the Japan Copper and Brass Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Semboshi.

Additional information

Manuscript submitted August 1, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semboshi, S., Kaneno, Y., Takasugi, T. et al. Effect of Composition on the Strength and Electrical Conductivity of Cu-Ti Binary Alloy Wires Fabricated by Aging and Intense Drawing. Metall Mater Trans A 50, 1389–1396 (2019). https://doi.org/10.1007/s11661-018-5088-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5088-z

Navigation