Skip to main content
Log in

Comparison of the Microstructures and Mechanical Properties in the Overlapping Region of Low Carbon Steel Additive Bead Fabricated by WAAM and FSP

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The periodic structural characteristics of the grains in the overlapping region of the WAAM deposited additive bead translate into spatially dependent local anisotropic mechanical properties. At the fusion boundary, the epitaxial growth causes the formation of columnar grains due to the high temperature gradient (G)/growth rate (R) ratio. As the solidification progresses to the centre of the overlapping region, the cooling rate decreases/or has a low value of G/R ratio. The grain structure changes to irregular lath-type morphology. After friction stir processing (FSP), the solidification microstructures are refined and have equiaxed grain morphology. The presence of \(\mathrm{E}, \, \overline{\mathrm{E} } , \, \mathrm{ J}, \, \overline{\mathrm{J} }, \, \mathrm{ and \, F}\) shear components have been observed along with the cube and \(\upgamma\)—fiber texture components. The presence of the two major components {111} < 112 > and {111} < 110 > of the \(\upgamma\)—fiber confirms the improvement in the percent elongation/formability of the overlapping region. The geometric necessary dislocations (GNDs) appearing around ferrite/cementite interface and near to the grain boundaries (GBs), the dislocation pinning by the sub-micron/nanoscale cementite particles via Orowan looping, and dynamic recovery associated networks/or subgrain boundaries formation are the main reasons for the three stages of work hardening rate \(\left(\theta =\frac{{\text{d}}\sigma }{{\text{d}}\varepsilon } \right)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Z. Pan, D. Ding, B. Wu, D. Cuiuri, H. Li, and J. Norrish: Transactions on intelligent welding manufacturing, Springer, Singapore, 2018, pp. 3–24.

    Book  Google Scholar 

  2. M. Chaturvedi, E. Scutelnicu, C.C. Rusu, L.R. Mistodie, D. Mihailescu, and S.A. Vendan: Metals (Basel), 2021, https://doi.org/10.3390/met11060939.

    Article  Google Scholar 

  3. S. Singh, S.K. Sharma, and D.W. Rathod: Mater. Today Proc., 2020, vol. 47, pp. 6564–575.

    Article  Google Scholar 

  4. N. Chernovol, B. Lauwers, and P. van Rymenant: Procedia CIRP, 2020, vol. 95, pp. 60–5.

    Article  Google Scholar 

  5. Y. Wang, X. Xu, Z. Zhao, W. Deng, J. Han, L. Bai, X. Liang, and J. Yao: J. Manuf. Process., 2021, vol. 71, pp. 306–16.

    Article  Google Scholar 

  6. B. Wu, Z. Pan, D. Ding, D. Cuiuri, H. Li, J. Xu, and J. Norrish: J. Manuf. Process., 2018, vol. 35, pp. 127–39.

    Article  Google Scholar 

  7. R. Stegemann, S. Cabeza, V. Lyamkin, G. Bruno, A. Pittner, R. Wimpory, M. Boin, and M. Kreutzbruck: J. Magn. Magn. Mater., 2017, vol. 426, pp. 580–87.

    Article  CAS  Google Scholar 

  8. D. Jafari, T.H.J. Vaneker, and I. Gibson: Mater. Des., 2021, vol. 202, p. 109471.

    Article  Google Scholar 

  9. C. Shen, M. Reid, K.D. Liss, Z. Pan, Y. Ma, D. Cuiuri, S. van Duin, and H. Li: Addit. Manuf., 2019, vol. 29, p. 100774.

    CAS  Google Scholar 

  10. Z. Lin, K. Song, and X. Yu: J. Manuf. Process., 2021, vol. 70, pp. 24–45.

    Article  Google Scholar 

  11. Y. Zeng, X. Wang, X. Qin, L. Hua, and M. Xu: Ultrasonics, 2021, vol. 110, p. 106273.

    Article  Google Scholar 

  12. X. He, T. Wang, K. Wu, and H. Liu: Meas. J. Int. Meas. Confed., 2021, vol. 173, p. 108633.

    Article  Google Scholar 

  13. M.A. Somashekara, M. Naveenkumar, A. Kumar, C. Viswanath, and S. Simhambhatla: Int. J. Adv. Manuf. Technol., 2017, vol. 90, pp. 2009–25.

    Article  Google Scholar 

  14. Y. Li, Q. Han, G. Zhang, and I. Horváth: Int. J. Adv. Manuf. Technol., 2018, vol. 96, pp. 3331–344.

    Article  Google Scholar 

  15. L. Palmeira Belotti, J.A.W. van Dommelen, M.G.D. Geers, C. Goulas, W. Ya, and J.P.M. Hoefnagels: J. Mater. Process. Technol., 2022, https://doi.org/10.1016/j.jmatprotec.2021.117373.

    Article  Google Scholar 

  16. C. Wang, T.G. Liu, P. Zhu, Y.H. Lu, and T. Shoji: Mater. Sci. Eng. A, 2020, https://doi.org/10.1016/j.msea.2020.140006.

    Article  Google Scholar 

  17. C.E. Seow, H.E. Coules, G. Wu, R.H.U. Khan, X. Xu, and S. Williams: Mater. Des., 2019, vol. 183, p. 108157.

    Article  CAS  Google Scholar 

  18. T.A. Rodrigues, V. Duarte, R.M. Miranda, T.G. Santos, and J.P. Oliveira: Materials (Basel), 2019, https://doi.org/10.3390/ma12071121.

    Article  Google Scholar 

  19. B. Zhang, W.J. Meng, S. Shao, N. Phan, and N. Shamsaei: Mater. Des. Process. Commun., 2019, https://doi.org/10.1002/mdp2.29.

    Article  Google Scholar 

  20. S. Paddea, J.A. Francis, A.M. Paradowska, P.J. Bouchard, and I.A. Shibli: Mater. Sci. Eng. A, 2012, vol. 534, pp. 663–72.

    Article  CAS  Google Scholar 

  21. S. Ghorbani, R. Ghasemi, R. Ebrahimi-Kahrizsangi, and A. Hojjati-Najafabadi: Mater. Sci. Eng. A, 2017, vol. 688, pp. 470–79.

    Article  CAS  Google Scholar 

  22. X. Li, J. Chen, P. Hua, K. Chen, W. Kong, H. Chu, Y. Wu, and W. Zhou: Fusion Eng. Des., 2018, vol. 128, pp. 175–81.

    Article  CAS  Google Scholar 

  23. A. Güral, B. Bostan, and A.T. Özdemir: Mater. Des., 2007, vol. 28, pp. 897–903.

    Article  Google Scholar 

  24. A.J.M. Gomes, J.C.F. Jorge, L.F.G. de Souza, and I. de Souza Bott: Mater. Sci. Forum, 2013, vol. 758, pp. 21–32.

    Article  Google Scholar 

  25. J.C.F. Jorge, J.L.D. Monteiro, A.J.D.C. Gomes, I.D.S. Bott, L.F.G. De Souza, M.C. Mendes, and L.S. Araújo: J. Mater. Res. Technol., 2019, vol. 8, pp. 561–71.

    Article  CAS  Google Scholar 

  26. A.G. Olabi and M.S.J. Hashmi: J. Mater. Process. Technol., 1995, vol. 55, pp. 117–22.

    Article  Google Scholar 

  27. S. Sirohi, A. Gupta, C. Pandey, R.S. Vidyarthy, K. Guguloth, and H. Natu: Opt. Laser Technol., 2022, https://doi.org/10.1016/j.optlastec.2021.107610.

    Article  Google Scholar 

  28. A.N. Vasileiou, M.C. Smith, J.A. Francis, D.W. Rathod, J. Balakrishnan, and N.M. Irvine: Int. J. Press. Vessel. Pip., 2019, vol. 172, pp. 379–90.

    Article  CAS  Google Scholar 

  29. S. Kožuh, M. Gojic, and L. Kosec: Kov. Mater., 2009, vol. 47, pp. 253–62.

    Google Scholar 

  30. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf: Eng. Fract. Mech., 2014, vol. 120, pp. 15–25.

    Article  Google Scholar 

  31. N. Ullah Khan, S.K. Rajput, V. Gupta, V. Verma, and T. Soota: Science direct to study mechanical properties and microstructures of MIG welded high strength low alloy steel. Mater. Today, 2019, vol. 18, pp. 2550–555.

    CAS  Google Scholar 

  32. A.A. Anshari and M. Imam: Innovation in materials science and engineering, Springer, Singapore, 2019.

    Google Scholar 

  33. M. Imam, R. Ueji, and H. Fujii: J. Mater. Process. Technol., 2016, vol. 230, pp. 62–71.

    Article  CAS  Google Scholar 

  34. P. Xue, Z.Y. Ma, Y. Komizo, and H. Fujii: Mater. Lett., 2016, vol. 162, pp. 161–64.

    Article  CAS  Google Scholar 

  35. K. Ito, T. Okuda, R. Ueji, H. Fujii, and C. Shiga: Mater. Des., 2014, vol. 61, pp. 275–80.

    Article  CAS  Google Scholar 

  36. H. Yamamoto, Y. Danno, K. Ito, Y. Mikami, and H. Fujii: Mater. Des., 2018, vol. 160, pp. 1019–28.

    Article  CAS  Google Scholar 

  37. S.Q. Moinuddin and A. Sharma: Mater. Des., 2015, vol. 67, pp. 293–302.

    Article  Google Scholar 

  38. M. Imam, S.N.S.H. Chittajallu, H. Gururani, H. Yamamoto, K. Ito, P.K. Parchuri, R. Mishra, A. Sharma, A. Richhariya, and V. Chinthapenta: Mater. Today Proc., 2022, vol. 56, pp. 690–705.

    Article  Google Scholar 

  39. M.A. Ali Anshari, M. Imam, M.Z. Khan Yusufzai, V. Chinthapenta, and R. Mishra: Mater. Sci. Eng. A, 2021, vol. 805, p. 140582.

    Article  CAS  Google Scholar 

  40. X. Yuan, H. Qiu, F. Zeng, W. Luo, H. Li, X. Wang, N. Guan, and F. Cui: J. Manuf. Process., 2022, vol. 77, pp. 63–74.

    Article  Google Scholar 

  41. C. Vundru, R. Singh, W. Yan, and S. Karagadde: J. Manuf. Sci. Eng. Trans. ASME, 2020, vol. 142, pp. 1–3.

    Article  Google Scholar 

  42. F. Montevecchi, G. Venturini, A. Scippa, and G. Campatelli: Procedia CIRP, 2016, vol. 55, pp. 109–14.

    Article  Google Scholar 

  43. C. Cambon, S. Rouquette, I. Bendaoud, C. Bordreuil, R. Wimpory, and F. Soulie: Weld. World, 2020, vol. 64, pp. 1427–435.

    Article  CAS  Google Scholar 

  44. F. Montevecchi, G. Venturini, N. Grossi, A. Scippa, and G. Campatelli: Addit. Manuf., 2018, vol. 21, pp. 479–86.

    Google Scholar 

  45. M.O. Couto, A.G. Rodrigues, F. Coutinho, R.R. Costa, A.C. Leite, F. Lizarralde, and J.C.P. Filho: J. Control. Autom. Electr. Syst., 2022, https://doi.org/10.1007/s40313-021-00880-0.

    Article  Google Scholar 

  46. J. Ding, P. Colegrove, J. Mehnen, S. Ganguly, P.M.S. Almeida, F. Wang, and S. Williams: Comput. Mater. Sci., 2011, vol. 50, pp. 3315–322.

    Article  CAS  Google Scholar 

  47. E.A. Bonifaz: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11539, LNCS, 2019, pp. 647–59.

  48. K.P. Prajadhiama, Y.H. Manurung, Z. Minggu, F.H. Pengadau, M. Graf, A. Haelsig, T.-E. Adams, and H.L. Choo: MATEC Web Conf., 2019, vol. 269, p. 05003.

    Article  CAS  Google Scholar 

  49. V. Javaheri, N. Khodaie, A. Kaijalainen, and D. Porter: Mater. Charact., 2018, vol. 142, pp. 295–308.

    Article  CAS  Google Scholar 

  50. Z. Ling, J. Fang, Y. Zhou, and Z. Yuan: Energy Procedia, 2012, vol. 16, pp. 444–50.

    Article  CAS  Google Scholar 

  51. C. Wang, X. Wang, J. Kang, G. Yuan, and G. Wang: Materials (Basel), 2019, https://doi.org/10.3390/ma12071070.

    Article  Google Scholar 

  52. G. Liang, Q. Tan, Y. Liu, T. Wu, X. Yang, Z. Tian, A. Atrens, and M.X. Zhang: J. Mater. Sci., 2021, vol. 56, pp. 3995–4005.

    Article  CAS  Google Scholar 

  53. M. Mahmoudiniya, A.H. Kokabi, M. Goodarzi, and L.A.I. Kestens: Mater. Sci. Eng. A, 2020, vol. 769, p. 138490.

    Article  CAS  Google Scholar 

  54. X. Wu, H. Lin, W. Luo, and H. Jiang: J. Mater. Res. Technol., 2021, vol. 15, pp. 6067–078.

    Article  CAS  Google Scholar 

  55. S. Kumar, S.K. Nath, and V. Kumar: Mater. Des., 2016, vol. 90, pp. 177–84.

    Article  CAS  Google Scholar 

  56. Y. Qi, J. Li, C. Shi, and Q. Zhu: High Temp. Mater. Process., 2019, vol. 38, pp. 183–91.

    Article  CAS  Google Scholar 

  57. B. Shassere, A. Nycz, M.W. Noakes, C. Masuo, and N. Sridharan: Appl. Sci., 2019, https://doi.org/10.3390/app9040787.

    Article  Google Scholar 

  58. M. Singh, R. Kumar, D.K. Shukla, and K.S. Arora: Mater. Res. Express, 2018, https://doi.org/10.1088/2053-1591/aaf156.

    Article  Google Scholar 

  59. J. Xie, C. Cai, Y. Liang, Z. Liu, and Y. Ma: Opt. Laser Technol., 2022, vol. 148, p. 107729.

    Article  CAS  Google Scholar 

  60. H.R.K. Zarchi, A. Khajesarvi, S.S.G. Banadkouki, and M.C. Somani: Rev. Adv. Mater. Sci., 2019, vol. 58, pp. 206–17.

    Article  Google Scholar 

  61. G.J. Davies and J.G. Garland: Int. Metall. Rev., 1975, vol. 20, pp. 83–108.

    Article  CAS  Google Scholar 

  62. T.W. Nelson, J.C. Lippold, and M.J. Mills: Weld. J. (Miami, Fla), 1999, vol. 78, p. 329.

    Google Scholar 

  63. R. Song, D. Ponge, and D. Raabe: Scr. Mater., 2005, vol. 52, pp. 1075–080.

    Article  CAS  Google Scholar 

  64. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi: Scr. Mater., 2007, vol. 57, pp. 1004–007.

    Article  CAS  Google Scholar 

  65. D. Embury and O. Bouaziz: Steel-based composites: driving forces and classifications. Annu. Rev. Mater. Res., 2010, vol. 40, pp. 213–41.

    Article  CAS  Google Scholar 

  66. S.H. He, B.B. He, K.Y. Zhu, and M.X. Huang: Acta Mater., 2017, vol. 135, pp. 382–89.

    Article  CAS  Google Scholar 

  67. J.M. Choung and S.R. Cho: J. Mech. Sci. Technol., 2008, vol. 22, pp. 1039–051.

    Article  Google Scholar 

  68. H. Beladi, I.B. Timokhina, X.Y. Xiong, and P.D. Hodgson: Acta Mater., 2013, vol. 61, pp. 7240–250.

    Article  CAS  Google Scholar 

  69. S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi, and A.G. Rao: Def. Technol., 2015, vol. 11, pp. 308–17.

    Article  Google Scholar 

  70. X. Yang, X. Di, X. Liu, D. Wang, and C. Li: Mater. Charact., 2019, vol. 155, p. 109818.

    Article  CAS  Google Scholar 

  71. A. Heidarzadeh, S. Mironov, R. Kaibyshev, G. Çam, A. Simar, A. Gerlich, F. Khodabakhshi, A. Mostafaei, D.P. Field, J.D. Robson, A. Deschamps, and P.J. Withers: Prog. Mater. Sci., 2020, vol. 117, p. 100752.

    Article  Google Scholar 

  72. K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, D. Kadau, P. Entel, M. Kreth, F. Westerhoff, and D.E. Wolf: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2004, vol. 35, pp. 2719–723.

    Article  Google Scholar 

  73. B.S. Murty, M.K. Datta, and S.K. Pabi: Sadhana - Acad. Proc Eng. Sci., 2003, vol. 28, pp. 23–45.

    CAS  Google Scholar 

  74. L.M. Clarebrough, M.E. Hargreaves, and M.H. Loretto: Acta Metall., 1958, vol. 6, pp. 725–35.

    Article  CAS  Google Scholar 

  75. X. Li and X. Jiang: Eng. Fract. Mech., 2019, vol. 212, pp. 258–68.

    Article  Google Scholar 

  76. S. Kou: Welding metallurgy, Wiley, Hoboken, 2003.

    Google Scholar 

  77. M.C. Flemings: Metall. Trans., 1974, vol. 5, pp. 2121–134.

    Article  CAS  Google Scholar 

  78. H. Ebrahimzadeh and S.A.A.A. Mousavi: Mater. Des., 2012, vol. 38, pp. 115–23.

    Article  CAS  Google Scholar 

  79. N.A. Berjeza, S.P. Velikevitch, V.I. Mazhukin, I. Smurov, and G. Flamant: Appl. Surf. Sci., 1995, vol. 86, pp. 303–09.

    Article  CAS  Google Scholar 

  80. Y. He, M. Zhong, N. Jones, J. Beuth, and B. Webler: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2021, vol. 52, pp. 4206–221.

    Article  CAS  Google Scholar 

  81. X. Lingda, Z. Guoli, M. Gaoyang, W. Chunming, and J. Ping: J. Alloys Compd., 2021, vol. 858, p. 157669.

    Article  Google Scholar 

  82. R.E. Smallman and A.H.W. Ngan: Mod. Phys. Metall., 2014, https://doi.org/10.1016/B978-0-08-098204-5.00012-2.

    Article  Google Scholar 

  83. C. Du, J.P.M. Hoefnagels, S. Kölling, M.G.D. Geers, J. Sietsma, R. Petrov, V. Bliznuk, P.M. Koenraad, D. Schryvers, and B. Amin-Ahmadi: Mater. Charact., 2018, vol. 139, pp. 411–20.

    Article  CAS  Google Scholar 

  84. Z. Du, X. Sun, F.L. Ng, Y. Chew, C. Tan, and G. Bi: Mater. Des., 2021, vol. 210, p. 110029.

    Article  CAS  Google Scholar 

  85. C. Cayron, F. Barcelo, and Y. de Carlan: Acta Mater., 2010, vol. 58, pp. 1395–402.

    Article  CAS  Google Scholar 

  86. M. Strangwood: Phase Transform. Steels, 2012, vol. 1, pp. 187–224.

    Article  CAS  Google Scholar 

  87. K. Koumatos, and A. Muehlemann: Acta Crystallogr. A, 2017, Vol. 73, pp. 1–12.

    Article  Google Scholar 

  88. T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki: Meta. Mater. Trans. A., 2008, vol. 39A, pp. 1003–013.

    Article  CAS  Google Scholar 

  89. S.M. Chowdhury, D.L. Chen, S.D. Bhole, E. Powidajko, D.C. Weckman, and Y. Zhou: Metal. Mater. Trans. A., 2011, vol. 42, pp. 1974–989.

    Article  CAS  Google Scholar 

  90. T.R. McNelley, S. Swaminathan, and J.Q. Su: Scr. Mater., 2008, vol. 58, pp. 349–54.

    Article  CAS  Google Scholar 

  91. R.W. Fonda and K.E. Knipling: Sci. Technol. Weld. Join., 2011, vol. 16, pp. 288–94.

    Article  Google Scholar 

  92. S. Emami, T. Saeid, and R. Azari Khosroshahi: J. Ultrafine Grained Nanostruct. Mater., 2018, vol. 51, pp. 20–5.

    CAS  Google Scholar 

  93. A.I. Gordienko, L.S. Derevyagina, A.G. Malikov, A.M. Orishich, N.S. Surikova, and M.N. Volochaev: Mater. Sci. Eng. A, 2020, vol. 797, p. 140075.

    Article  CAS  Google Scholar 

  94. T. Nguyen, D.J. Luscher, and J.W. Wilkerson: J. Mech. Phys. Solids, 2017, vol. 108, pp. 1–29.

    Article  Google Scholar 

  95. H.K.D.H. Bhadeshia and S.R. Honeycombe: Steels, Edward Arnold, London, 2006, pp. 129–54.

    Book  Google Scholar 

  96. Y.T. Zhou, X.H. Shao, S.J. Zheng, and X.L. Ma: J. Mater. Sci. Technol., 2022, vol. 101, pp. 28–36.

    Article  Google Scholar 

  97. C. Gracia-mateo: Metals, 2018, Vol. 8, p. 166.

    Article  Google Scholar 

  98. H. Guo, Q. Li, Y. Fan, and X. Feng: J. Mater. Res. Technol., 2020, vol. 9, pp. 9206–218.

    Article  CAS  Google Scholar 

  99. G.K. Bansal, S. Tripathy, A.K. Chandan, V. Rajinikanth, C. Ghosh, V.C. Srivastava, and S. Ghosh Chowdhury: Mater. Sci. Eng. A, 2021, vol. 826, p. 141937.

    Article  CAS  Google Scholar 

  100. A. Heidarzadeh, K. Kazemi-Choobi, H. Hanifian, and P. Asadi: Microstructural evolution, Woodhead Publishing, Cambridge, 2014.

    Book  Google Scholar 

  101. T. Song and B. Charles De Cooman: Metal. Mater. Trans. A., 2013, vol. 44A, pp. 1686–705.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the funding support under the Early Career Research (ECR) Grant by the Department of Science and Technology (DST), Government of India, for carrying out the research reported in this manuscript.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murshid Imam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anshari, M.A.A., Mishra, R., Imam, M. et al. Comparison of the Microstructures and Mechanical Properties in the Overlapping Region of Low Carbon Steel Additive Bead Fabricated by WAAM and FSP. Metall Mater Trans A 54, 869–895 (2023). https://doi.org/10.1007/s11661-022-06934-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06934-5

Navigation