Skip to main content
Log in

Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al–Cu–Li Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The investigation concentrates on friction stir welded (FSW) Al–Cu–Li alloy concerning its local microstructural evolution and mechanical properties. The grain features were characterized by electron back scattered diffraction (EBSD) technology, while precipitate characterization was conducted by using transmission electron microscopy (TEM) aligned along [011]Al and [001]Al zone axes. The mechanical properties are evaluated through micro-hardness and tensile testing. It can be found that nugget zones exhibit finely equiaxed grains evolved through complete dynamic recrystallization (DRX), primarily occurring in continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX). In the thermal–mechanically affected zone (TMAZ), numerous sub-structured grains, exhibiting an elongated morphology, were created due to partial DRX, signifying the dominance of CDRX, DDRX, and geometric dynamic recrystallization (GDRX) in this region. T1 completely dissolves in the nugget zone (NZ) leading to the formation of Guinier–Preston zones and increase of δ′, β′ and S′. Conversely, T1 partially solubilizes in TMAZ, the lowest hardness zone (LHZ) and heat affected zone (HAZ), and the residual T1 undergoes marked coarsening, revealing various T1 variants. The solubilization and coarsening of T1 are primary contributors to the degradation of hardness and strength. θ′ primarily dissolves and coarsens in NZ and TMAZ, whilst this precipitate largely coarsens in HAZ and LHZ. σ, TB, grain boundary phases (GBPs) and precipitate-free zone (PFZ) are newly generated during FSW. σ exists in the TMAZ, LHZ and HAZ, whereas TB nucleates in NZ. GBPs and PFZ mostly develop in LHZ and HAZ, which can cause strain localization during tensile deformation, potentially leading to LHZ joint fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. N. Eswara, A. Gokhale, R.J.H. Wanhill, Aluminum–Lithium Alloys (Elsevier, Butterworth-Heinemann, Kidlington, 2014), pp. 27–58

    Google Scholar 

  2. Y. Yang, J. Bi, H. Liu, Y. Li, M.Y. Li, S.S. Ao, Z. Luo, J. Manuf. Process. 82, 230 (2022)

    Article  Google Scholar 

  3. T. Jiang, T. Jiao, G. Dai, Z.K. Shen, Y.H. Guo, Z.G. Sun, W.Y. Li, J. Alloy. Compd. 935, 168019 (2023)

    Article  CAS  Google Scholar 

  4. N. Eswara, A. Gokhale, R.J.H. Wanhill, Aluminum–Lithium Alloys (Elsevier, Butterworth-Heinemann, Kidlington, 2014), pp.503–535

    Google Scholar 

  5. R. Mishra, H. Sidhar, Friction Stir Welding of 2xxx Aluminum Alloys including Al–Li Alloys, 1st edn. (Elsevier, USA, 2016)

    Google Scholar 

  6. M.N. Avettand-Fènoël, R. Taillard, J. Laye, O. Odièvre, Metall. Mater. Trans. A 4, 5563 (2013)

    Google Scholar 

  7. Y.L. Ma, H.B. Xu, Z.Y. Yuan, L. Liu, Acta Metall. Sin. -Engl. Lett. 33, 127 (2020)

    Article  CAS  Google Scholar 

  8. M.M. Attallah, H.G. Salem, Mater. Sci. Eng. A 391, 51 (2005)

    Article  Google Scholar 

  9. H.S. Lee, J.H. Yoon, J.T. Yoo, K. No, Proc. Eng. 149, 62 (2016)

    Article  CAS  Google Scholar 

  10. J. Zhang, X.S. Feng, J.S. Gao, H. Huang, Z.Q. Ma, L.J. Guo, J. Mater. Sci. Technol. 34, 219 (2018)

    Article  Google Scholar 

  11. Y.Q. Mao, P. Yang, L.M. Ke, Y. Xu, Y.H. Chen, Acta Metall. Sin. -Engl. Lett. 35, 745 (2022)

    Article  CAS  Google Scholar 

  12. T.S. Liu, F. Qiu, H.Y. Yang, S.L. Shu, J.F. Xie, Q.C. Jiang, L.C. Zhang, Mater. Sci. Eng. A 871, 144929 (2023)

    Article  CAS  Google Scholar 

  13. D. Li, H. Liu, S. Du, X.M. Li, Y.S. Gao, Y.Y. Zuo, Mater. Sci. Eng. A 864, 144572 (2023)

    Article  CAS  Google Scholar 

  14. K. Huang, R.E. Logé, Mater. Des. 111, 548 (2016)

    Article  CAS  Google Scholar 

  15. Z. Shen, S. Chen, L. Cui, D. Li, X. Liu, W. Hou, H. Chen, Z. Sun, W.Y. Li, Mater. Charact. 186, 111808 (2022)

    Article  Google Scholar 

  16. P. Chen, J. Chen, S.Y. Qin, S.Q. Zou, S.B. Song, T. Jiang, Z.Q. Zhang, Z.H. Jia, Q. Liu, Mater. Sci. Eng. A 823, 141501 (2021)

    Article  Google Scholar 

  17. P. Chen, S.Q. Zou, J. Chen, S.Y. Qin, Q.B. Yang, Z.Q. Zhang, Z.H. Jia, L. Zhang, T. Jiang, Q. Liu, Mater. Charact. 176, 111079 (2021)

    Article  CAS  Google Scholar 

  18. P. Chen, T.N. Li, X. Yin, Y. Tang, G. Liu, S.B. Wang, B.S. Huang, Z.Q. Zhang, J. Mater. Res. Technol. 24, 1991 (2023)

    Article  ADS  CAS  Google Scholar 

  19. H. Sidhar, R.S. Mishra, Mater. Des. 110, 60 (2016)

    Article  CAS  Google Scholar 

  20. Z. Yu, J. Qiu, H. Li, P. Cai, L. Zhang, X.X. Fu, J.S. Wang, N.M. Xiao, Mater. Sci. Eng. A 863, 144525 (2023)

    Article  CAS  Google Scholar 

  21. M.X. Milagre, N.V. Mogili, U. Donatus, R.A.R. Giorjao, M.S. Terada, J.V.S. Araujo, C.S.C. Machacho, I. Costa, Mater. Charact. 140, 233 (2018)

    Article  CAS  Google Scholar 

  22. Y. Tao, Z. Zhang, B.H. Yu, P. Xue, D.R. Ni, B.L. Xiao, Z.Y. Ma, Mater. Charact. 168, 110524 (2020)

    Article  CAS  Google Scholar 

  23. R.W. Fonda, J.F. Bingert, Metall. Mater. Trans. A 37, 3593 (2006)

    Article  Google Scholar 

  24. N. Eswara, A. Gokhale, R.J.H. Wanhill, Aluminum–Lithium Alloys (Elsevier, Butterworth-Heinemann, Kidlington, 2014), pp.61–97

    Google Scholar 

  25. G.H. Wu, C.C. Shi, L. Zhang, W.C. Liu, A.T. Chen, W.J. Ding, Acta Metall. Sin. -Engl. Lett. 33, 1243 (2020)

    Article  CAS  Google Scholar 

  26. N. Eswara, A. Gokhale, R.J.H. Wanhill, Aluminum–Lithium Alloys (Elsevier, Butterworth-Heinemann, Kidlington, 2014), pp.99–137

    Google Scholar 

  27. C.H. Fan, L. Ou, Z.Y. Hu, S. Wang, J.H. Wang, Trans. Nonferrous Metal. Soc. 30, 2590 (2020)

    Article  CAS  Google Scholar 

  28. C. Liu, Z. Ma, P. Ma, L.H. Zhan, M.H. Huang, Mater. Sci. Eng. A 733, 28 (2018)

    Article  CAS  Google Scholar 

  29. J.H. Kim, J.H. Jeun, H.J. Chun, Y.R. Lee, J.T. Yoo, J.H. Yoon, H.S. Lee, J. Alloy. Compd. 669, 187 (2016)

    Article  CAS  Google Scholar 

  30. V.A. Peters, B. Gault, F.D. Geuser, A. Deschamps, J.L.M. Cairney, Acta Mater. 66, 199 (2014)

    Article  ADS  Google Scholar 

  31. T.F. Chung, Y.L. Yang, C.N. Hsiao, W.C. Li, B.M. Huang, C.S. Tsao, Z.S. Shi, J.G. Lin, P.E. Fischione, T. Ohmura, J.R. Yang, Inter. J. Lightw. Mater. Manuf. 1, 142 (2018)

    Google Scholar 

  32. X.Y. Wang, J.T. Jiang, G.A. Li, X.M. Wang, J. Sun, L. Zhen, J. Alloy. Compd. 815, 152469 (2020)

    Article  CAS  Google Scholar 

  33. B. Cai, Z.Q. Zheng, D.Q. He, S.C. Li, H.P. Li, J. Alloy. Compd. 649, 19 (2015)

    Article  CAS  Google Scholar 

  34. Z.Y. Ma, A.H. Feng, D.L. Chen, J. Shen, Crit. Rev. Solid State 43, 269 (2017)

    Article  Google Scholar 

  35. R.S. Mishra, Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005)

    Article  Google Scholar 

  36. P.S. Chen, B.N. Bhat, NASA Technical Report 211548 (2002).

  37. J.A. Schneider, A.C. Nunes, P.S. Chen, G. Steele, J. Mater. Sci. 40, 4341 (2005)

    Article  ADS  CAS  Google Scholar 

  38. Y. Ni, Y. Liu, P. Zhang, J.K. Huang, X.Q. Yu, Mater. Charact. 187, 11873 (2022)

    Article  Google Scholar 

  39. J. Kang, M. Si, J. Wang, L. Zhou, X.D. Jiao, Q.P. Wu, Mater. Charact. 196, 112634 (2023)

    Article  CAS  Google Scholar 

  40. L. Zhou, C.L. Wu, P. Xie, F.J. Niu, W.Q. Ming, K. Du, J.H. Chen, J. Mater. Sci. Technol. 75, 126 (2021)

    Article  CAS  Google Scholar 

  41. Z. Shen, Q. Ding, C. Liu, J.W. Wang, H. Tian, J.X. Li, Z. Zhang, J. Mater. Sci. Technol. 33, 1159 (2017)

    Article  CAS  Google Scholar 

  42. H. Li, Y. Tang, Z. Zeng, Z.Q. Zheng, F. Zheng, Mater. Sci. Eng. A 498, 314 (2008)

    Article  Google Scholar 

  43. J.E. Kertz, P.I. Gouma, R.G. Buchheit, Metall. Mater. Trans. A 32, 2561 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Natural Science Foundation of Sichuan Province (2023NSFSC0915), the Postdoctoral Research Project Special Fund of Sichuan Province and Natural Science Starting Project of SWPU (2023QHZ017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen, Bensheng Huang or Zhiqing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Chen, W., Chen, J. et al. Microstructure Evolution and Mechanical Properties of Friction Stir Welded Al–Cu–Li Alloy. Acta Metall. Sin. (Engl. Lett.) (2024). https://doi.org/10.1007/s40195-024-01674-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40195-024-01674-4

Keywords

Navigation