Skip to main content
Log in

Residual Stress Gradient Built in X40CrMoVN16-2 Austenitic Steel Cube Manufactured by Laser Powder Bed Fusion

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additive manufacturing processes and especially the family of laser powder bed fusion technologies have a great industrial potential since it enables, from metal powder beds, to produce full density complex monolithic parts. The high-temperature gradient resulting from the locally concentrated energy input leads to strong temperature fields driving non-negligible residual stress gradients, part deformations and crack formation. Resulting stress and texture gradients arise from the interdependent physical phenomena (metallurgical, thermal, mechanical and fluid mechanics) occurring during the process. Present work focuses on the residual stress being built in an austenitic stainless steel cubical shaped part of 1 cm side, prepared by a laser powder bed fusion process from a gas-atomized metallic powder (from martensitic X40CrMoVN16-2 stainless steel), through a full residual stress tensor mapping achieved thanks to neutron diffraction. Stress analyses incorporate morphological and crystallographic textures, as well as elastic anisotropy. Components of the principal stress tensor display compressive values close to the baseplate that develop into low compression, and a tensile stress state at the subsurface (surrounding thermal history effects). Results also underline the strong impact of matter environment (and thus thermal environment) onto stress gradient magnitude and the complex loading origins of the residual stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.E. Frazier: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1917–28.

    Article  CAS  Google Scholar 

  2. K.V. Wong and A. Hernandez: ISRN Mech. Eng., 2012, vol. 2012, pp. 1–10.

    Article  Google Scholar 

  3. L.E. Murr, S.M. Gaytan, F. Medina, H. Lopez, E. Martinez, B.I. Machado, D.H. Hernandez, L. Martinez, M.I. Lopez, R.B. Wicker, and J. Bracke: Philos. Trans. R. Soc. A, 2010, vol. 368, pp. 1999–2032.

    Article  CAS  Google Scholar 

  4. A. Uriondo, M. Esperon-Miguez, and S. Perinpanayagam: Proc. Inst. Mech. Eng. Part G, 2015, vol. 229, pp. 2132–47.

    Article  CAS  Google Scholar 

  5. S.H. Huang, P. Liu, A. Mokasdar, and L. Hou: Int. J. Adv. Manuf. Technol., 2013, vol. 67, pp. 1191–1203.

    Article  Google Scholar 

  6. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing: Appl. Phys. Rev., 2015, vol. 2, pp. 1–21.

    Article  Google Scholar 

  7. Y. Wang, K.M. Yu, and C.C.L. Wang: CAD Comput. Aided Des., 2015, vol. 63, pp. 1–11.

    Article  CAS  Google Scholar 

  8. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers: J. Mater. Process. Technol., 2004, vol. 149, pp. 616–22.

    Article  CAS  Google Scholar 

  9. D.W. Brown, J.D. Bernardin, J.S. Carpenter, B. Clausen, D. Spernjak, and J.M. Thompson: Mater. Sci. Eng. A, 2016, vol. 678, pp. 291–98.

    Article  CAS  Google Scholar 

  10. D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann: Acta Mater., 2016, vol. 117, pp. 371–92.

    Article  CAS  Google Scholar 

  11. H.E. Sabzi and P.E.J. Rivera-Díaz-del-Castillo: Materials, 2019, vol. 12, p. 3791.

    Article  CAS  Google Scholar 

  12. J.L. Bartlett and X. Li: Addit. Manuf., 2019, vol. 27, pp. 131–49.

    Google Scholar 

  13. P.J. Withers: Rep. Prog. Phys., 2007, vol. 70, pp. 2211–64.

    Article  Google Scholar 

  14. V. (Viktor) Hauk: Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier, Amsterdam, 1997.

  15. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355–65.

    Article  CAS  Google Scholar 

  16. C. Li, Z.Y. Liu, X.Y. Fang, and Y.B. Guo: Procedia CIRP, 2018, vol. 71, pp. 348–53.

    Article  Google Scholar 

  17. P. Mercelis and J.P. Kruth: Rapid Prototyp. J., 2006, vol. 12, pp. 254–65.

    Article  Google Scholar 

  18. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.

    Article  CAS  Google Scholar 

  19. L. Pintschovius, V. Jung, E. Macherauch, and O. Vöhringer: Mater. Sci. Eng., 1983, vol. 61, pp. 43–50.

    Article  Google Scholar 

  20. D. Gloaguen, B. Girault, B. Courant, P.-A. Dubos, M.-J. Moya, F. Edy, and J. Rebelo Kornmeier: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 951–61.

    Article  Google Scholar 

  21. T. Fritsch, M. Sprengel, A. Evans, L. Farahbod-Sternahl, R. Saliwan-Neumann, M. Hofmann, and G. Bruno: J. Appl. Crystallogr., 2021, vol. 54, pp. 228–36.

    Article  CAS  Google Scholar 

  22. F. Bayerlein, F. Bodensteiner, C. Zeller, M. Hofmann, and M.F. Zaeh: Addit. Manuf., 2018, vol. 24, pp. 587–94.

    Google Scholar 

  23. H. Jones: Mater. Sci. Eng. A, 2004, vol. 375–377, pp. 104–11.

    Article  Google Scholar 

  24. J. Dunkley Dr: in Advances in Powder Metallurgy: Properties, Processing and Applications, Elsevier Inc., Amsterdam, 2013, pp. 3–18.

  25. A.V. Gusarov and I. Smurov: Phys. Procedia, 2010, vol. 5, pp. 381–94.

    Article  CAS  Google Scholar 

  26. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik: J. Mater. Process. Technol., 2014, vol. 214, pp. 2915–25.

    Article  Google Scholar 

  27. J.R. Santisteban, M.R. Daymond, J.A. James, and L. Edwards: J. Appl. Crystallogr., 2006, vol. 39, pp. 812–25.

    Article  CAS  Google Scholar 

  28. P.J. Withers, M. Preuss, A. Steuwer, and J.W.L. Pang: J. Appl. Crystallogr., 2007, vol. 40, pp. 891–904.

    Article  CAS  Google Scholar 

  29. W. Kockelmann, L.C. Chapon, and P.G. Radaelli: Phys. B, 2006, vol. 385–386, pp. 639–43.

    Article  Google Scholar 

  30. A.C. Hannon: Nucl. Instrum. Methods Phys. Res. Sect. A, 2005, vol. 551, pp. 88–107.

    Article  CAS  Google Scholar 

  31. H.R. Wenk, S. Matthies, J. Donovan, and D. Chateigner: J. Appl. Crystallogr., 1998, vol. 31, pp. 262–69.

    Article  CAS  Google Scholar 

  32. T. Simson, A. Emmel, A. Dwars, and J. Böhm: Addit. Manuf., 2017, vol. 17, pp. 183–89.

    CAS  Google Scholar 

  33. A. Baczmański, N. Hfaiedh, M. François, and K. Wierzbanowski: Mater. Sci. Eng. A, 2009, vol. 501, pp. 153–65.

    Article  Google Scholar 

  34. H. Dölle and V. Hauk: Int. J. Mater. Res., 1978, vol. 69, pp. 410–17.

    Article  Google Scholar 

  35. D. Gloaguen, T. Berchi, E. Girard, and R. Guillén: J. Nucl. Mater., 2008, vol. 374, pp. 138–46.

    Article  CAS  Google Scholar 

  36. V. Hounkpati, S. Fréour, D. Gloaguen, V. Legrand, J. Kelleher, W. Kockelmann, and S. Kabra: Acta Mater., 2016, vol. 109, pp. 341–52.

    Article  CAS  Google Scholar 

  37. T. Lorentzen and T. Leffers: Measurement of Residual and Applied Stress Using Neutron Diffraction, Springer, Dordrecht, 1992, pp. 253–61.

    Book  Google Scholar 

  38. B. Clausen, T. Lorentzen, and T. Leffers: Acta Mater., 1998, vol. 46, pp. 3087–98.

    Article  CAS  Google Scholar 

  39. J.D. Eshelby: Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci., 1957, vol. 241, pp. 376–96.

    Google Scholar 

  40. E. Kröner: Zeitschrift für Phys., 1958, vol. 151, pp. 504–18.

    Article  Google Scholar 

  41. H.-R. Wenk and P. Van Houtte: Reports. Prog. Phys., 2004, vol. 67, pp. 1367–1428.

    Article  CAS  Google Scholar 

  42. Y.J. Liu, Q. Sun, X.L. Fan, and T. Suo: Mater. Sci. Eng. A, 2013, vol. 576, pp. 337–45.

    Article  CAS  Google Scholar 

  43. K. Kempen, E. Yasa, L. Thijs, J.P. Kruth, and J. Van Humbeeck: Phys. Procedia, 2011, vol. 12, pp. 255–63.

    Article  CAS  Google Scholar 

  44. Z. Hu, H. Zhu, H. Zhang, and X. Zeng: Opt. Laser Technol., 2017, vol. 87, pp. 17–25.

    Article  CAS  Google Scholar 

  45. R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.-P. Kruth, and J. Van Humbeeck: Phys. Procedia, 2016, vol. 83, pp. 882–90.

    Article  CAS  Google Scholar 

  46. A. Bénéteau, P. Weisbecker, G. Geandier, E. Aeby-Gautier, and B. Appolaire: Mater. Sci. Eng. A, 2005, vol. 393, pp. 63–70.

    Article  Google Scholar 

  47. J.C. Zhao and M.R. Notis: Mater. Sci. Eng. R, 1995, vol. 15, pp. 135–207.

    Article  Google Scholar 

  48. R.M. German: Mater. Des., 1984, vol. 5, p. 294.

    Google Scholar 

  49. T. Vilaro, C. Colin, and J.D. Bartout: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3190–99.

    Article  Google Scholar 

  50. F.B. Pickering: Physical Metallurgy and the Design of Steels, Applied Sciences Publishers, London, 1978.

    Google Scholar 

  51. J.A. Brooks and A.W. Thompson: Int. Mater. Rev., 1991, vol. 36, pp. 16–44.

    Article  CAS  Google Scholar 

  52. S. Astafurov and E. Astafurova: Metals, 2021, vol. 11, p. 1052.

    Article  CAS  Google Scholar 

  53. Q. Saby, J.-Y. Buffière, E. Maire, T. Joffre, J. Bajolet, S. Garabédian, P. Vikner, and X. Boulnat: Addit. Manuf., 2021, vol. 44, 102031.

    CAS  Google Scholar 

  54. J.P. Oliveira, T.G. Santos, and R.M. Miranda: Prog. Mater. Sci., 2020, vol. 107, 100590.

    Article  CAS  Google Scholar 

  55. H.L. Wei, J. Mazumder, and T. DebRoy: Sci. Rep., 2015, vol. 5, pp. 1–7.

    Google Scholar 

  56. S. Cooke, K. Ahmadi, S. Willerth, and R. Herring: J. Manuf. Process., 2020, vol. 57, pp. 978–1003.

    Article  Google Scholar 

  57. M. Sanjari, A. Hadadzadeh, H. Pirgazi, A. Shahriari, B.S. Amirkhiz, L.A.I. Kestens, and M. Mohammadi: Mater. Sci. Eng. A, 2020, vol. 786, 139365.

    Article  CAS  Google Scholar 

  58. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E.A. Jägle: Mater. Sci. Eng. A, 2020, vol. 772, 138633.

    Article  CAS  Google Scholar 

  59. A. Basak and S. Das: Annu. Rev. Mater. Res., 2016, vol. 46, pp. 125–49.

    Article  CAS  Google Scholar 

  60. P. Krakhmalev, G. Fredriksson, K. Svensson, I. Yadroitsev, I. Yadroitsava, M. Thuvander, and R. Peng: Metals, 2018, vol. 8, p. 643.

    Article  Google Scholar 

  61. F. Geiger, K. Kunze, and T. Etter: Mater. Sci. Eng. A, 2016, vol. 661, pp. 240–46.

    Article  CAS  Google Scholar 

  62. I. Serrano-Munoz, T. Mishurova, T. Thiede, M. Sprengel, A. Kromm, N. Nadammal, G. Nolze, R. Saliwan-Neumann, A. Evans, and G. Bruno: Sci. Rep., 2020, vol. 10, p. 14645.

    Article  CAS  Google Scholar 

  63. T. Niendorf, S. Leuders, A. Riemer, H.A. Richard, T. Tröster, and D. Schwarze: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 794–96.

    Article  Google Scholar 

  64. A. Röttger, K. Geenen, M. Windmann, F. Binner, and W. Theisen: Mater. Sci. Eng. A, 2016, vol. 678, pp. 365–76.

    Article  Google Scholar 

  65. R. Casati, J. Lemke, and M. Vedani: J. Mater. Sci. Technol., 2016, vol. 32, pp. 738–44.

    Article  CAS  Google Scholar 

  66. S. Bahl, S. Mishra, K.U. Yazar, I.R. Kola, K. Chatterjee, and S. Suwas: Addit. Manuf., 2019, vol. 28, pp. 65–77.

    CAS  Google Scholar 

  67. J. Zhao, J. Hou, L. Chen, B. Dai, X. Xiong, L. Tan, K. Zhang, and A. Huang: Mater. Today Commun., 2020, vol. 25, 101299.

    Article  CAS  Google Scholar 

  68. J. Hou, W. Chen, Z. Chen, K. Zhang, and A. Huang: J. Mater. Sci. Technol., 2020, vol. 48, pp. 63–71.

    Article  CAS  Google Scholar 

  69. H. Yu, J. Yang, J. Yin, Z. Wang, and X. Zeng: Mater. Sci. Eng. A, 2017, vol. 695, pp. 92–100.

    Article  CAS  Google Scholar 

  70. N.E. Hodge, R.M. Ferencz, and J.M. Solberg: Comput. Mech., 2014, vol. 54, pp. 33–51.

    Article  Google Scholar 

  71. I. Tolosa, F. Garciandía, F. Zubiri, F. Zapirain, and A. Esnaola: Int. J. Adv. Manuf. Technol., 2010, vol. 51, pp. 639–47.

    Article  Google Scholar 

  72. O.O. Salman, F. Brenne, T. Niendorf, J. Eckert, K.G. Prashanth, T. He, and S. Scudino: J. Manuf. Process., 2019, vol. 45, pp. 255–61.

    Article  Google Scholar 

  73. J. Robinson, I. Ashton, P. Fox, E. Jones, and C. Sutcliffe: Addit. Manuf., 2018, vol. 23, pp. 13–24.

    CAS  Google Scholar 

  74. B. Cheng, S. Shrestha, and K. Chou: Addit. Manuf., 2016, vol. 12, pp. 240–51.

    Google Scholar 

  75. J.-P. Kruth, J. Deckers, E. Yasa, and R. Wauthlé: Proc. Inst. Mech. Eng. Part B, 2012, vol. 226, pp. 980–91.

    Article  Google Scholar 

  76. L. Parry, I.A. Ashcroft, and R.D. Wildman: Addit. Manuf., 2016, vol. 12, pp. 1–15.

    Google Scholar 

  77. J.H. Robinson, I.R.T. Ashton, E. Jones, P. Fox, and C. Sutcliffe: Rapid Prototyp. J., 2019, vol. 25, pp. 289–98.

    Article  Google Scholar 

  78. M. Masoomi, N. Shamsaei, R.A. Winholtz, J.L. Milner, T. Gnäupel-Herold, A. Elwany, M. Mahmoudi, and S.M. Thompson: Data Br., 2017, vol. 13, pp. 408–14.

    Article  Google Scholar 

  79. R.A. Winholtz and A.D. Krawitz: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 1287–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Science and Technology Facilities Council (STFC) for granted access to neutron beamtime at the ISIS Pulsed Neutron and Muon Source on ENGIN-X (https://doi.org/10.5286/ISIS.E.RB1610144) and GEM (https://doi.org/10.5286/ISIS.E.RB1690381) beamlines, respectively. We thank Dr. S. Khazaie for relevant and fruitful discussions regarding propagation of error calculation concerns. This work has been achieved in the framework of the FUI MOULINNOV project funded by BPI, FEDER, Rhône-Alpes & Pays de la Loire Regions, Loire country, Saint-Etienne urban agglomeration under the supervision of ViaMeca, EMC2 and Plastipolis Clusters. Finally, we would like to thank in particular the CERO company for Dr. P.-Y. Durand’s PhD work financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Girault.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girault, B., Limousin, M., Gloaguen, D. et al. Residual Stress Gradient Built in X40CrMoVN16-2 Austenitic Steel Cube Manufactured by Laser Powder Bed Fusion. Metall Mater Trans A 54, 4012–4030 (2023). https://doi.org/10.1007/s11661-023-07148-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-07148-z

Navigation