Skip to main content
Log in

Microstructural and Chemical Changes of a Ti-Stabilized Austenitic Stainless Steel After Exposure to Liquid Sodium at Temperatures Between 500 °C and 650 °C

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-stabilized austenitic stainless steel was carburized in sodium containing a high carbon activity at three different temperatures, 500 °C, 600 °C, and 650 °C during 1000 hours and 5000 hours. The carbon profile, the carbide volume fraction, and the lattice parameter evolution as function of depth were determined using high-energy X-ray diffraction and electron probe microanalysis. At 650 °C and 600 °C, the carbon precipitated as M23C6 and M7C3 carbides in the sample. The volume fraction of M7C3 carbides was lower than predicted by thermodynamic equilibrium using Thermo-Calc software®. At 500 °C, carbides almost did not form in the steel. Instead, high carbon supersaturation of the austenitic matrix occurred. Both results demonstrate that the carburization profile was strongly influenced by the kinetics of carbide formation at temperatures lower than 650 °C. High-energy X-ray diffraction measurements demonstrated that the austenite and carbide lattice parameters evolved along the carbon profile. Both measured lattice parameter profiles of austenite and M23C6 carbide were compared to the ones predicted from chemical changes of austenite and carbides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Austenitic Improved Material

References

  1. M. Romedenne, F. Rouillard, D. Hamon, M. Tabarant, D. Monceau: 2019, Corrosion, vol. 75 (10), pp. 1173-82.

  2. H. J. Heuvel, P. Höller, P. Dönner: Journal of Nuclear Materials, 1985, vol. 130, pp. 517-523.

    Article  CAS  Google Scholar 

  3. Ph. Dünner, H. J. Heuvel, M. Hörle: Journal of Nuclear Materials, 1984, vol. 124, pp. 185-194.

    Article  Google Scholar 

  4. R. E. Jr. Dahl, Boron carbide development for FFTF control elements (HEDL – SA – 565). United States.

  5. K. Chandran, S. Anthonysamy, M. Lavanya, R. Sudha, P. R. Reshmi, D. Annie, R. Raja Madhavan, T. N. Prasanthi, C. Sudha, S. Saroja, V. Ganesan: Procedia Engineering, 2014, vol. 86, pp. 631-38.

  6. F. Rouillard, M. Romedenne, Etat de l’art sur l’interaction B4C – acier de gaine et loi de durée de vie des gaines des éléments absorbants – NT DPC/SCCME 17-789-A 2017 (2017).

  7. M. M. Oakden, B. Munro, J. E. Brocklehurst, B. T. Kelly: Fast Reactor Core and Fuel Structural Behaviour, 1990, vol. 4 (6), pp. 33-39.

    Google Scholar 

  8. W. F. Holcomb: Nuclear Engineering and Design, 1967, vol. 6, pp. 264-272.

    Article  CAS  Google Scholar 

  9. F. B. Litton, A. E. Morris: Journal of the Less-Common Metals, 1970, vol. 22, pp. 71-82.

    Article  CAS  Google Scholar 

  10. W. J. Anderson, G. V. Sneesby: Atomic International Report NAASR – 5289 (1960).

  11. A. Thorley, C. Tyzack: British Nuclear Energy Society, Conference Proceedings, 1971.

  12. A. W. Thorley, A. Blundell, W. G. Murphy: Liquid Metal Engineering and Technology, 1984, vol. 154, pp. 197-206.

    Google Scholar 

  13. J. R. Gwyther, M. R. Hobdell, A. J. Hooper: Metals Technology, 1974, vol. 1 (1), pp. 406-411.

    Article  Google Scholar 

  14. W. Charnock, J. E. Cordwell, J. R. Gwyther, M. R. Hodbell, P. Marshall, I. R. McLauchlin: International Conference on the Physical Metallurgy of Reactor Fuel Elements, 1975, vol. 8, pp. 37-46.

    Google Scholar 

  15. J. L. Krankota: Journal of Engineering Materials and Technology, 1976, vol. 98 (1), pp. 9-16.

    Article  CAS  Google Scholar 

  16. M. Romedenne, F. Rouillard, D. Hamon, B. Malard, D. Monceau: Corrosion Science, 2019, vol. 159, pp. 108147.

    Article  CAS  Google Scholar 

  17. M. Romedenne, F. Rouillard, B. Duprey, D. Hamon, M. Tabarant, D. Monceau: Oxidation of Metals, 2017, vol. 87, pp. 643–653.

    Article  CAS  Google Scholar 

  18. C. Sudha, N. S. Bharasi, R. Anand, H. Shaikh, R. Dayal, M. Vijayalakshmi: Journal of Nuclear Materials, 2010, vol. 402 (2), pp. 186–195.

    Article  CAS  Google Scholar 

  19. N. Sivai Baharasi, K. Thyagarajan, H. Shaikh, M. Radhika, A. K. Balamurugan, S. Venugopal, A. Moitra, S. Kalavathy, S. Chandramouli, A. K. Tyagi, R. K. Dayal, K. K. Rajan: Metall. Mater. Trans. A, 2012, vol. 43 A, pp. 561-71.

  20. N. Sivai Baharasi, M. G. Pujar, K. Thyagarajan, C. Mallika, U. Kamachi Mudali, A. Dhaul, M. Nandagopal, A. Moitra, S. Chandramouli, K. K. Rajan: Metall. Mater. Trans. A, 2015, vol. 46 A, pp. 6065–80.

  21. N. S. Baharasi, M. G. Pujar, C. R. Das, J. Philip, K. Thyagarajan, S. Paneerselvi, A. Moitra, S. Chandramouli, V. Karki, S. Kannan: Journal of Nuclear Materials, 2019, vol. 516, pp. 84-99.

    Article  CAS  Google Scholar 

  22. H. U. Borgstedt, Journal of Nuclear Materials, 2003, vol. 317, pp. 160 – 166.

    Article  CAS  Google Scholar 

  23. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, M. Carboneras, R. Arrabal, Acta Materialia, 2007, vol 55, 2239-2251.

    Article  CAS  Google Scholar 

  24. F. Rouillard: Influence de la carburation sur le comportement mécanique des aciers: Données d’entrée pour la loi de durée de vie des gaines des Eléments Absorbants et Réflexions, NT DPC/SCCME 18-872-A (2017).

  25. M. Romedenne, Etude de la carburation et de boruration d’aciers inoxydables en milieu sodium: interaction B4C – gaine, Thèse de doctorat de l’Université de Toulouse (2018).

  26. M. F. Slim, G. Geandier, M. Romedenne, F. Rouillard, B. Malard, Oxidation of Metals, 2021, https://doi.org/10.1007/s11085-021-10039-6.

    Article  Google Scholar 

  27. J. Kieffer, D. Karkoulis: Journal of Physics: Conference Series, 2013, vol. 425, pp. 202012.

    Google Scholar 

  28. L. Lutterotti, S. Matthies, H. R. Wenk: Proceeding of the 12th International Conference on Textures of Materials (ICOTOM-12), 1999, vol. 1, p. 1599.

  29. A. Borgenstam, A. Engstrom, L. Hoglund, J. Agren: Journal of Phase Equilibria, 2000, vol. 21 (3), pp. 269-280.

    Article  CAS  Google Scholar 

  30. A. Engström, L. Höglund, J. Ågren: Metallurgical and Materials Transactions A, 1994, vol. 25 (6), pp. 1127-1134.

    Article  Google Scholar 

  31. T. Turpin, J. Dulcy, M. Gantois: Metallurgical and Materials Transactions A, 2005, vol. 36 (10), pp. 2751-2760.

    Article  Google Scholar 

  32. J. Garcia, O. Prat: Applied Surface Science, 2011, vol. 257 (21), pp. 8894-8900.

    Article  CAS  Google Scholar 

  33. D. Rong, J. Gong, Y. Jiang: Procedia Engineering, 2015, vol. 130, pp. 676-684.

    Article  CAS  Google Scholar 

  34. H. Larsson, A, Engström: Acta Mater. 2006, vol. 54 (9), pp. 2431-39.

  35. H. Larsson, L. Höglund: CALPHAD, vol. 33 (3), pp. 495-501.

  36. H. Kahn, G. M. Michal, F. Ernst, A. H. Heuer: Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 1799-1804.

    Article  CAS  Google Scholar 

  37. L. Cheng, A. Böttger, Th. H. de Keijser, E. J. Mittemeijer: Scripta Metallurgica et Materialia, 1990, vol. 24, pp. 509-514.

    Article  CAS  Google Scholar 

  38. D. J. Dyson, B. Holmes: Journal of The Iron and Steel Institute, 1970, vol. 208, pp. 469-474.

    CAS  Google Scholar 

  39. C. P. Scott, J. Drillet: Scripta Materialia, 2007, vol. 56, pp. 489-492.

    Article  CAS  Google Scholar 

  40. Y. Sun, X. Li, T. Bell: Materials Science and Technology, 1999, vol. 15, pp. 1171-1178.

    Article  CAS  Google Scholar 

  41. T. S. Hummelshoj, T. L. Christiansen, M. A. J. Somers: Scripta Materialia, 2010, vol. 63, pp. 761-763.

    Article  CAS  Google Scholar 

  42. N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J. P. Wright, S. van der Zwaag: Acta Materialia, 2005, vol. 53, pp. 5439-5447.

    Article  CAS  Google Scholar 

  43. S. J. Lee, Y. K. Lee: Scripta Materialia, 2005, vol. 52, pp. 973-976.

    Article  CAS  Google Scholar 

  44. Y. Cao, F. Ernest, G. M. Michal: Acta Materialia, 2003, vol. 51, pp. 4171-4181.

    Article  CAS  Google Scholar 

  45. JCGM 100: Evaluation of measurement data - Guide to the expression of uncertainty in measurement (2008). https://www.bipm.org/en/about-us/.

  46. JCGM 200: International vocabulary of metrology - Basic and general concepts and associated terms (VIM) (2012). https://www.bipm.org/en/about-us/.

  47. A. L. Bowman, G. P. Arnold, E. K. Storms, N. G. Nereson: Acta Crystallographica B, 1972, vol. B28, pp. 3102-3103.

    Article  Google Scholar 

  48. J. Y. Xie, N. X. Chen, L. D. Teng, S. Seetharaman: Acta Materialia, 2005, vol. 53, pp. 5305-5312.

    Article  CAS  Google Scholar 

  49. P. Villars, L. D. Calvert: Metals Park (OH): ASM (1991).

  50. C. Jiang: Applided Physics Letters, 2008, vol. 92, pp. 041909.

    Article  CAS  Google Scholar 

  51. C. M. Fang, M. A. Van Huis, M. H. F. Sluiter: Acta Materialia, 2016, vol. 103, pp. 273-279.

    Article  CAS  Google Scholar 

  52. Y. Yijie, X. Weiwei, X. Fangfang, G. Tieqiang, C. Lijie: Advances in Engineering Research, 2017, vol. 121, pp. 74-80.

    Google Scholar 

  53. J. Han, C. Wang, X. Liu, Y. Wang, Z.-K. Liu: J. Phys., 2012, vol. 24 (50), pp. 505503.

  54. C. Fang, M. Van Huis, M. Sluiter, H. Zandbergen:Acta Materialia, 2010, vol. 58 (8), pp. 2968-2977.

    Article  CAS  Google Scholar 

  55. Z. Q. Lv, F. Dong, Z. A. Zhou, G. F. Jin, S. H. Sun, W. T. Fu: Journal of Alloys and Compounds, 2014, vol. 607, pp. 207-214.

    Article  CAS  Google Scholar 

  56. X. Gong, C. Cui, Q. Yu, W. Wang, W. W. Xu, L. Chen: Journal of Alloys and Compounds, 2020, vol. 824, pp. 153948.

    Article  CAS  Google Scholar 

  57. Y. Gong, D. J. Young, C. Atkinson, T. Olszewski, W. J. Quadakkers, R. C. Reed: Corrosion Science, 2020, vol. 173, pp. 108699.

    Article  CAS  Google Scholar 

  58. H. J. Christ: Materials and Corrosion, 1998, vol. 49 (4), pp. 258 - 265

    Article  CAS  Google Scholar 

  59. S. I. Ford, P. Munroe, D. Young: John Stringer Symposium on High Temperature Corrosion, 2001, pp. 77-85.

  60. F. Ernst, Y. Cao, G. M. Michal: Acta Materialia, 2004, vol. 52, pp. 1469-1477.

    Article  CAS  Google Scholar 

  61. T. Christiansen, M. A. J. Somers: Metall. Mater. Trans. A, 2009, vol. 40 A, pp. 1791-98.

  62. T. L. Christiansen, T. S. Hummelshoj, M. A. J. Somers: Surface Engineering, 2010, vol. 26, pp. 242-247.

    Article  CAS  Google Scholar 

  63. F. Ernst, Y. Cao, G. M. Michal, A. H. Heuer: Acta Materialia, 2007, vol. 55, pp. 1895-1906.

    Article  CAS  Google Scholar 

  64. X. Y. Li, S. Thaiwatthana, H. Dong, T. Bell: Surface Engineering, 2002, vol. 18 (6), pp. 448-452.

    Article  CAS  Google Scholar 

  65. Y. Peng, Z. Liu, Y. Jiang, B. Wang, J. Gong, M. A. J. Somers: Scripta Materialia, 2018, vol. 157, pp. 106-109.

    Article  CAS  Google Scholar 

  66. S. Jegou, T. L. Christiansen, M. Klaus, Ch. Genzel, M. A. J. Somers: Thin Solid Films, 2013, vol. 530, pp. 71-76.

    Article  CAS  Google Scholar 

  67. F. A. P. Fernandes, T. L. Christiansen, G. Winter, M. A. J. Somers: Acta Materialia, 2015, vol. 94, pp. 271-280.

    Article  CAS  Google Scholar 

  68. LabEx DAMAS: labex-damas.univ-lorraine.fr.

Download references

Acknowledgments

The authors gratefully acknowledge the Deutsches Elektronen-Synchrotron (DESY-Petra III, Hamburg, Germany) for provision of beamtime at the PETRA P07-EH2 beamline. We would like to thank Olof Gutowski for assistance during the HEXRD experiments, A. Lequien and T. Vandenberghe for having carried out the EPMA analyses, P. Nerfie for the technical support in carrying out the carburizing tests, and J. Ghanbaja, S. Migot, and M. Emo from the Microscopies and Microprobes competence center of IJL for having carried out the TEM experiments. The RG4 project from CEA is thanked for having partially funded this study.

Funding

This work was supported by the French Alternative Energies and Atomic Energy Commission, EDF, Framatome, the project CALIPSOOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020 and the French State through the program “Investissements du futur” operated by the National Research Agency (ANR) and referenced by ANR-11-LABX-0008-01[68]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fares Slim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 19 March 2021; accepted 8 July 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slim, M.F., Geandier, G., Malard, B. et al. Microstructural and Chemical Changes of a Ti-Stabilized Austenitic Stainless Steel After Exposure to Liquid Sodium at Temperatures Between 500 °C and 650 °C. Metall Mater Trans A 52, 4438–4453 (2021). https://doi.org/10.1007/s11661-021-06396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06396-1

Navigation