Skip to main content
Log in

Dissolution Behavior of Carbide in 4Cr13 Martensitic Stainless Steel during Austenitizing

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The dissolution behavior of M23C6 carbide in 4Cr13 martensitic stainless steel during austenitizing and its effect on the microstructure and mechanical properties of this steel are investigated in this study. The samples of steel are heated at different austenitizing temperatures from 1000 to 1150 °C for 10-60 min. The results reveal that as the austenitizing temperature and time increase, the average initial austenite grain size increases, the carbide volume fraction decreases, and the average carbide size increases. The rapid dissolution of small carbides mainly contributes to the change in the average carbide size. The carbides can be completely dissolved in the matrix at 1150 °C for 30 min. After quenching, the hardness first increases and then decreases with increasing carbide dissolution degree. An increase in the hardness is related to an increase in the carbon content of the quenched martensite, and a decrease in the hardness is associated with an increase in the volume fraction of the retained austenite. Furthermore, a mathematical model is established to predict the volume fraction of carbides, which is in agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, Hierarchical Design Principles of Selective Laser Melting for High-Quality Metallic Objects, Addit. Manuf., 2015, 7, p 45–56. https://doi.org/10.1016/j.addma.2014.12.007

    Article  CAS  Google Scholar 

  2. N. Momenzadeh, S.D. Nath, T.A. Berfield, and S.V. Atre, In Situ Measurement of Thermal Strain Development in 420 Stainless Steel Additive Manufactured Metals, Exp. Mech., 2019, 59(6), p 819–827. https://doi.org/10.1007/s11340-019-00513-3

    Article  CAS  Google Scholar 

  3. K. Saeidi, D.L. Zapata, F. Lofaj, L. Kvetkova, J. Olsen, Z. Shen, and F. Akhtar, Ultra-High Strength Martensitic 420 Stainless Steel with High Ductility, Addit. Manuf., 2019, 29, 100803. https://doi.org/10.1016/j.addma.2019.100803

    Article  CAS  Google Scholar 

  4. A.N. Isfahany, H. Saghafian, and G. Borhani, The Effect of Heat Treatment on Mechanical properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel, J. Alloy. Compd., 2011, 509(9), p 3931–3936. https://doi.org/10.1016/j.jallcom.2010.12.174

    Article  CAS  Google Scholar 

  5. S.K. Bhambri, Intergranular Fracture in 13 wt.% Chromium Martensitic Stainless Steel, J. Mater. Sci., 1986, 21(5), p 1741–1746. https://doi.org/10.1007/BF01114734

    Article  CAS  Google Scholar 

  6. M. Harwarth, A. Brauer, Q. Huang, M. Pourabdoli, and J. Mola, Influence of Carbon on the Microstructure Evolution and Hardness of Fe-13Cr-xC (x = 0-0.7 wt.%) Stainless Steel, Materials, 2021, 14(17), p 5063. https://doi.org/10.3390/ma14175063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S.D. Nath, H. Irrinki, G. Gupta, M. Kearns, O. Gulsoy, and S. Atre, Microstructure-Property Relationships of 420 Stainless Steel Fabricated By Laser-Powder Bed Fusion, Powder Technol., 2019, 343, p 738–746. https://doi.org/10.1016/j.powtec.2018.11.075

    Article  CAS  Google Scholar 

  8. H. Hill, U. Raab, S. Weber, W. Theisen, M. Wollmann, and L. Wagner, Influence of Heat Treatment on the Performance Characteristics of a Plastic Mold Steel, Steel Res. Int., 2011, 82(11), p 1290–1296. https://doi.org/10.1002/srin.201100098

    Article  CAS  Google Scholar 

  9. J. Li, T. He, P. Zhang, L. Cheng, and L. Wang, Effect of Large-Size Carbides on the Anisotropy of Mechanical Properties in 11Cr-3Co-3W Martensitic Heat-Resistant Steel for Turbine High Temperature Blades in Ultra-Supercritical Power Plants, Mater Charact, 2020, 159, 110025. https://doi.org/10.1016/j.matchar.2019.110025

    Article  CAS  Google Scholar 

  10. J. Syarif, M.H. Yousuf, Z. Sajuri, A.H. Baghdadi, M. Merabtene, and M.Z. Omar, Effect of Partial Solution Treatment Temperature on Microstructure and $ of 440C martensitic $, Metals., 2020, 10(5), p 694. https://doi.org/10.3390/met10050694

    Article  CAS  Google Scholar 

  11. Q.-T. Zhu, J. Li, C.-B. Shi, and W.-T. Yu, Effect of Quenching Process on the Microstructure and Hardness of High-Carbon Martensitic Stainless Steel, J. Mater. Eng. Perform., 2015, 24(11), p 4313–4321. https://doi.org/10.1007/s11665-015-1723-7

    Article  CAS  Google Scholar 

  12. S.K. Bonagani, V. Bathula, and V. Kain, Influence of Tempering Treatment on Microstructure and Pitting Corrosion of 13 wt.% Cr Martensitic Stainless Steel, Corros. Sci., 2018, 131, p 340–354. https://doi.org/10.1016/j.corsci.2017.12.012

    Article  CAS  Google Scholar 

  13. A. Dalmau, C. Richard, and A. Igual-Muñoz, Degradation Mechanisms in Martensitic Stainless Steels: Wear, Corrosion and Tribocorrosion Appraisal, Tribol. Int., 2018, 121, p 167–179. https://doi.org/10.1016/j.triboint.2018.01.036

    Article  CAS  Google Scholar 

  14. L.D. Barlow and M. Du Toit, Effect of Austenitizing Heat Treatment on the Microstructure and Hardness of Martensitic Stainless Steel AISI 420, J. Mater. Eng. Perform., 2012, 21(7), p 1327–1336. https://doi.org/10.1007/s11665-011-0043-9

    Article  CAS  Google Scholar 

  15. S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang, and X.-Y. Ge, Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel, Metall. Mater. Trans. A, 2015, 46(12), p 6090–6102. https://doi.org/10.1007/s11661-015-3180-1

    Article  CAS  Google Scholar 

  16. S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang, Y. Shao, and X.-Y. Ge, Effects of Austenitizing Temperature on the Microstructure and Electrochemical Behavior of a Martensitic Stainless Steel, J. Appl. Electrochem., 2015, 45(4), p 375–383. https://doi.org/10.1007/s10800-015-0796-1

    Article  CAS  Google Scholar 

  17. C.G. de Andrés, G. Caruana, and L. Alvarez, Control of M23C6 Carbides in 0.45C-13Cr Martensitic Stainless Steel by Means of Three Representative Heat Treatment Parameters, Mater. Sci. Eng. A, 1998, 241(1–2), p 211–215. https://doi.org/10.1016/S0921-5093(97)00491-7

    Article  Google Scholar 

  18. E. Saliba and M. Grech, The Effect of Heat Treatment Parameters on the Microstructure and Torque Response of a 13 wt.% Cr Steel, J. Magn. Magn. Mater., 2022, 541, 168543. https://doi.org/10.1016/j.jmmm.2021.168543

    Article  CAS  Google Scholar 

  19. J.-H. Kang and P.E.J. Rivera-Díaz-del-Castillo, Carbide Dissolution in Bearing Steels, Comput. Mater. Sci., 2013, 67, p 364–372. https://doi.org/10.1016/j.commatsci.2012.09.022

    Article  CAS  Google Scholar 

  20. J. Bratberg, J. Ågren, and K. Frisk, Diffusion Simulations of MC and M7C3 Carbide Coarsening in bcc and fcc Matrix Utilising New Thermodynamic and Kinetic Description, Mater. Sci. Technol., 2013, 24(6), p 695–704. https://doi.org/10.1179/174328407x240954

    Article  Google Scholar 

  21. S.B. Hosseini, R. Dahlgren, K. Ryttberg, and U. Klement, Dissolution of Iron-Chromium Carbides During White Layer Formation Induced by Hard Turning of AISI 52100 Steel, Procedia. CIRP, 2014, 14, p 107–112. https://doi.org/10.1016/j.procir.2014.03.095

    Article  Google Scholar 

  22. W. Song, P.-P. Choi, G. Inden, U. Prahl, D. Raabe, and W. Bleck, On the Spheroidized Carbide Dissolution and Elemental Partitioning in High Carbon Bearing Steel 100Cr6, Metall. Mater. Trans. A, 2013, 45(2), p 595–606. https://doi.org/10.1007/s11661-013-2048-5

    Article  CAS  Google Scholar 

  23. A.S. Sozykina, K.Y. Okishev, A.G. Grebenshchikova, and D.A. Mirzaev, Kinetic Description of (Cr, Fe)7C3 Carbide Dissolution in Austenite of High-Carbon Fe-Cr-C Ternary Alloys, Mater. Sci. Forum, 2016, 870, p 409–415. https://doi.org/10.4028/www.scientific.net/MSF.870.409

    Article  Google Scholar 

  24. B.-J. Lee, On the Stability of Cr Carbides, Calphad, 1992, 16(2), p 121–149. https://doi.org/10.1016/0364-5916(92)90002-F

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Fu or Liming Fu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Fu, B., Guan, W. et al. Dissolution Behavior of Carbide in 4Cr13 Martensitic Stainless Steel during Austenitizing. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09509-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09509-0

Keywords

Navigation