Skip to main content
Log in

Solid-State Phase Transformations Involving (Nb,Mo)2CrB2 Borides and (Nb,Ti)2CS Carbosulfides at the Grain Boundaries of Superalloy Inconel 718

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present paper studied the solid-state phase transformations occurring at the grain boundaries of a conventional cast-and-wrought alloy within the chemical specifications of superalloy Inconel 718. These phase transformations involved the precipitation of (Nb,Mo)2CrB2 borides and (Nb,Ti)2CS carbosulfides, which are usually phases rather associated to solidification phenomena than to solid-state phase precipitation in superalloy Inconel 718. The study started from a material solution-treated above the δ solvus. When this material was heated subsolvus δ from room temperature, (Nb,Mo)2CrB2 borides was found to precipitate at the grain boundaries, in addition to the δ phase. Then, when the material was reheated supersolvus δ after the subsolvus treatment, the complete dissolution of the δ phase and the partial dissolution of the (Nb,Mo)2CrB2 phase released niobium and titanium atoms in the grain boundaries. Both elements have a strong affinity with carbon and sulfur, and this favored the precipitation of secondary (Nb,Ti)C carbides and (Nb,Ti)2CS carbosulfides at grain boundaries. An analysis of the interactions between the segregating species C, B and S evidenced that the precipitation of (Nb,Mo)2CrB2 borides at grain boundaries was very likely made possible by a decreased carbon activity during the subsolvus δ treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. R.E. Schafrik, D.D. Ward, and J.R. Groh: in Superalloys 718, 625, 706 and Various Derivatives, TMS, 2001, pp. 1–11.

  2. G.D. Smith and S.J. Patel: in Superalloys 718, 625, 706 and Derivatives, TMS, 2005, pp. 135–54.

  3. M.G. Burke and M.K. Miller: in Superalloys 718, 625 and Various Derivatives, TMS, 1991, pp. 337–50.

  4. S.T. Wlodek and R.D. Field: in Superalloys 718, 625, 706 and Various Derivatives, TMS, 1994, pp. 659–70.

  5. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: in Superalloys 718, 625, 706 and Various Derivatives, TMS, 1997, pp. 367–78.

  6. H.E. Collins: in International Symposium on Structural Stability in Superalloys (1968), TMS, 1968, pp. 171–98.

  7. 7 I. Kirman: J. Iron Steel Inst., 1969, vol. 207, p. 1612.

    CAS  Google Scholar 

  8. 8 I. Kirman and D.H. Warrington: Metall. Trans., 1970, vol. 1, pp. 2667–75.

    CAS  Google Scholar 

  9. 9 M. Dehmas, J. Lacaze, A. Niang, and B. Viguier: Adv. Mater. Sci. Eng., 2011, vol. 2011, pp. 1–9.

    Article  Google Scholar 

  10. A. Mitchell, A.J. Schmalz, C. Schvezov, and S.L. Cockroft: in Superalloys 718, 625, 706 and Various Derivatives, TMS, 1994, pp. 65–78.

  11. 11 A. Formenti, A. Eliasson, A. Mitchell, and H. Fredriksson: High Temp. Mater. Process., 2005, vol. 24, pp. 239–58.

    Article  CAS  Google Scholar 

  12. 12 R.T. Holt and W. Wallace: Int. Met. Rev., 1976, vol. 21, pp. 1–24.

    Article  CAS  Google Scholar 

  13. M.K. Miller, J.A. Horton, W.D. Cao, and R.L. Kennedy: Le J. Phys. IV, 1996, vol. 06, pp. C5-241-C5-246.

  14. 14 T.M. Pollock and S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361–74.

    Article  CAS  Google Scholar 

  15. 15 S. Benhadad, N.L. Richards, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2005–17.

    Article  CAS  Google Scholar 

  16. W.D. Cao and R.L. Kennedy: in Superalloys 1996, TMS, 1996, pp. 589–97.

  17. J.T. Guo and L.Z. Zhou: in Superalloys 1996, TMS, 1996, pp. 451–55.

  18. 18 D.W. Yun, S.M. Seo, H.W. Jeong, and Y.S. Yoo: Corros. Sci., 2014, vol. 83, pp. 176–88.

    Article  CAS  Google Scholar 

  19. 19 W.R. Sun, S.R. Guo, D.Z. Lu, and Z.O. Hu: Mater. Lett., 1997, vol. 31, pp. 195–200.

    Article  CAS  Google Scholar 

  20. 20 R. Vincent: Acta Metall., 1985, vol. 33, pp. 1205–16.

    Article  CAS  Google Scholar 

  21. 21 W. Chen, M.C. Chaturvedi, N.L. Richards, and G. McMahon: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1947–54.

    Article  CAS  Google Scholar 

  22. 22 L. Peng, S. Takizawa, K. Ikeda, T. Horiuchi, and S. Miura: Intermetallics, 2019, vol. 110, pp. 2–7.

    Article  Google Scholar 

  23. Alloy Wire International: Inconel® 718, https://www.alloywire.fr/products/inconel-718/.

  24. 24 E. Nes, N. Ryum, and O. Hunderi: Acta Metall., 1985, vol. 33, pp. 11–22.

    Article  CAS  Google Scholar 

  25. 25 S. Vernier, J.-M. Franchet, M. Lesne, T. Douillard, J. Silvent, C. Langlois, and N. Bozzolo: Mater. Charact., 2018, vol. 142, pp. 492–503.

    Article  CAS  Google Scholar 

  26. 26 B. Ter-Ovanessian, C. Berrest, J. Deleume, J.M. Cloué, and E. Andrieu: Defect Diffus. Forum, 2009, vol. 289–292, pp. 161–6.

    Article  Google Scholar 

  27. 27 G. Love, V.D. Scott, N.M.T. Dennis, and L. Laurenson: Scanning, 1981, vol. 4, pp. 32–9.

    Article  CAS  Google Scholar 

  28. 28 F.J. Humphreys: J. Mater. Sci., 2001, vol. 36, pp. 3833–54.

    Article  CAS  Google Scholar 

  29. 29 H.J. Beattie: Acta Crystallogr., 1958, vol. 11, pp. 607–9.

    Article  CAS  Google Scholar 

  30. 30 J. Berlin: Imaging Microsc., 2011, vol. 13, pp. 19–21.

    Google Scholar 

  31. 31 H. Müllejans and J. Bruley: Le J. Phys. IV, 1993, vol. 3, pp. 2083–92.

    Google Scholar 

  32. 32 J.J. Lander, H.E. Kern, and A.L. Beach: J. Appl. Phys., 1952, vol. 23, pp. 1305–9.

    Article  CAS  Google Scholar 

  33. 33 K. Takagi, W. Koike, A. Momozawa, and T. Fujima: Solid State Sci., 2012, vol. 14, pp. 1643–7.

    Article  CAS  Google Scholar 

  34. 34 A. Miyoshi and A. Hara: J. Japan Soc. Powder Powder Metall., 1965, vol. 12, pp. 78–84.

    Article  CAS  Google Scholar 

  35. ATI Allvac Company: ATI 718 Alloy—Technical Data Sheet, 2011.

  36. 36 F. Masoumi, M. Jahazi, D. Shahriari, and J. Cormier: J. Alloys Compd., 2016, vol. 658, pp. 981–95.

    Article  CAS  Google Scholar 

  37. 37 W. Kesternich: MRS Proc., 1985, vol. 62, p. 229.

    Article  Google Scholar 

  38. 38 E.P. Whelan and M.S. Grzedzielski: Met. Technol., 1974, vol. 1, pp. 186–90.

    Article  Google Scholar 

  39. R.G. Thompson, M.C. Koopman, and B.H. King: in Superalloys 718, 625, 706 and Various Derivatives, 1991, pp. 53–70.

  40. 40 T. Alam, P.J. Felfer, M. Chaturvedi, L.T. Stephenson, M.R. Kilburn, and J.M. Cairney: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2183–91.

    Article  Google Scholar 

  41. 41 D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, and P.-P. Choi: Curr. Opin. Solid State Mater. Sci., 2014, vol. 18, pp. 253–61.

    Article  CAS  Google Scholar 

  42. 42 P. Kontis, H.A.M. Yusof, S. Pedrazzini, M. Danaie, K.L. Moore, P.A.J. Bagot, M.P. Moody, C.R.M. Grovenor, and R.C. Reed: Acta Mater., 2016, vol. 103, pp. 688–99.

    Article  CAS  Google Scholar 

  43. 43 Y.Q. Li and J.Y. Liu: High Temp. Technol., 1990, vol. 8, pp. 278–82.

    Article  CAS  Google Scholar 

  44. 44 M. Paju and R. Möller: Scr. Metall., 1984, vol. 18, pp. 813–5.

    Article  CAS  Google Scholar 

  45. 45 X.L. He, Y.Y. Chu, and J.J. Jonas: Acta Metall., 1989, vol. 37, pp. 2905–16.

    Article  CAS  Google Scholar 

  46. 46 H. Erhart and H.J. Grabke: Met. Sci., 1981, vol. 15, pp. 401–8.

    Article  CAS  Google Scholar 

  47. 47 L. Xiao, D.L. Chen, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2006, vol. 428, pp. 1–11.

    Article  Google Scholar 

  48. 48 P. Kontis, E. Alabort, D. Barba, D.M. Collins, A.J. Wilkinson, and R.C. Reed: Acta Mater., 2017, vol. 124, pp. 489–500.

    Article  CAS  Google Scholar 

  49. 49 J.M. Walsh and B.H. Rear: Metall. Trans. A, 1975, vol. 6, pp. 950–950.

    Article  Google Scholar 

  50. 50 H. Guo, M.C. Chaturvedi, and N.L. Richards: Sci. Technol. Weld. Join., 1998, vol. 3, pp. 257–9.

    Article  Google Scholar 

  51. D. Monceau and C. Boudias: CaRine Crystallography, 1993-2019, http://carine.crystallography.pagesperso-orange.fr/.

Download references

Acknowledgments

The authors thank the STAE foundation for the funding of the present study. They are also grateful to the staff of the UMS Raimond Castaing (Toulouse, France) who provided a precious support for the characterization of the microstructures. Finally, the authors are grateful to Pr. J. Lacaze who performed ThermoCalc calculations and recommended interesting papers from literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Laffont.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted 17 February 2020; Accepted 22 September 2020.

Appendix

Appendix

See Figures A1, A2 and A3.

Fig. A1
figure 19

SAED patterns acquired on the particle 1 of Fig. 7. From (a) to (d): experimental diffraction pattern (left) and the corresponding diffraction pattern from the simulation (right). Simulated diffraction patterns were obtained using the CaRine software.[51] The simulation is based on the tetragonal structure P4/mbm (space group number: 127) whose lattice parameters were set to a = 5.72 Å and c = 3.09 Å

Fig. A2
figure 20

Stereographic projection of the tetragonal structure P4/mbm overlaid with the beam directions used for the SAED acquisitions. The SAED analyses were all performed on the particle 1 of Fig. 7. The stereographic projection was drawn using the CaRine software[51] (a = 5.72 Å and c = 3.09 Å). It was approximately oriented so as to best fit with the acquisition frame. For each SAED acquisition, the electron beam direction is defined by the two tilt angles \( \varvec{\theta}_{1} \) and \( \varvec{\theta}_{2} \). The beam directions used for the four SAED patterns shown in Fig. A1 are displayed in red. The fifth direction displayed in blue correspond to another SAED pattern which was also consistently indexed with the tetragonal structure P4/mbm but which is not shown here for the sake of brevity (Color figure online)

Fig. A3
figure 21

EELS analysis performed on a (Nb,Mo)2CrB2 boride lying at a grain boundary. (a) HAADF STEM image. The blue arrow highlights the (Nb,Mo)2CrB2 boride which was analyzed. (b) EELS spectrum acquired in the location pointed by the red cross in (a). The K edge of boron, the L edge of chromium and the M edges of niobium and molybdenum were drawn over the acquired spectrum. This way, it clearly appears that in addition to niobium, molybdenum and chromium, the precipitate does contain boron (Color figure online)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernier, S., Pugliara, A., Viguier, B. et al. Solid-State Phase Transformations Involving (Nb,Mo)2CrB2 Borides and (Nb,Ti)2CS Carbosulfides at the Grain Boundaries of Superalloy Inconel 718. Metall Mater Trans A 51, 6607–6629 (2020). https://doi.org/10.1007/s11661-020-06045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06045-z

Navigation