Skip to main content
Log in

Oxidation behavior of Nb–24Ti–18Si–2Al–2Hf–4Cr and Nb–24Ti–18Si–2Al–2Hf–8Cr hypereutectic alloys at 1250 °C

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Nb–24Ti–18Si–2Al–2Hf–4Cr and Nb–24Ti–18Si–2Al–2Hf–8Cr alloys were prepared by arc melting in a water-cooled crucible under argon atmosphere. Microstructural characteristics and oxidation resistance of the alloys at 1250 °C were investigated. The results show that, when the Cr content is 4 at%, the microstructures consist of (Nb,Ti)SS and Nb5Si3; as Cr content increases to 8 at%, C14 Laves phase Cr2Nb is formed. The isothermal oxidation tests show that the oxidation kinetics of the two alloys follow similar features. The weight gains of the two alloys after oxidation at 1250 °C for 100 h are 235.61 and 198.50 mg·cm−2, respectively. During oxidation, SiO2, TiO2, Nb2O5 and CrNbO4 are formed at first. Then, Ti2Nb10O29 is formed after oxidation for 20 min and begins to change into TiNb2O7 as the oxidation proceeds. SiO2 is formed as solid state at first but later evolves into glassy state to improve the cohesion of the scale. After oxidation for 100 h, oxidation products consist of SiO2, TiNb2O7, Nb2O5 and CrNbO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yao CF, Guo XP, Guo HS. Microstructural characteristics of integrally directionally solidified Nb–Ti–Si base ultrahigh temperature alloy with crucibles. Acta Metallurgica Sinica. 2008;44(5):579.

    Google Scholar 

  2. Chan KS. Alloying effects on the fracture toughness of Nb-based silicides and Laves phases. Mater Sci Eng A. 2005;409(1–2):257.

    Article  Google Scholar 

  3. Bewlay BP, Jackson MR, Lipsitt HA. The balance of mechanical and environmental properties of a multi-element niobium-niobium silicide-based in situ composite. Metall Mater Trans. 1996;27(12):3801.

    Article  Google Scholar 

  4. Subramanian PR, Parthasarathy TA, Mendiratta MG, Dimiduk DM. Compressive creep behavior of Nb5Si3. Scripta Mater. 1995;32(8):1227.

    Article  Google Scholar 

  5. Jackson MR, Rowe RG, Skelly DW. Oxidation of some intermetallic compounds and intermetallic matrix composites. MRS Proceedings, Vol. 364. Sacramento: Cambridge University Press; 1994. 1339.

    Google Scholar 

  6. Zhao JC, Peluso LA, Jackson MR, Tan Lizhen. Phase diagram of the Nb–Al–Si ternary system. J Alloy Compd. 2003;360(1):183.

    Article  Google Scholar 

  7. Bewlay BP, Jackson MR, Zhao JC, Subramanian PR, Mendiratta MG, Lewandowski JJ. Ultrahigh-temperature Nb-silicide-based composites. MRS Bull. 2003;28(09):646.

    Article  Google Scholar 

  8. Subramanian PR, Mendiratta MG, Dimiduk DM. The development of Nb-based advanced intermetallic alloys for structural applications. JOM. 1996;48(1):33.

    Article  Google Scholar 

  9. Yao DZ, Cai R, Zhou CG, Sha JB, Jiang HR. Experimental study and modeling of high temperature oxidation of Nb-base in situ composites. Corros Sci. 2009;51(2):364.

    Article  Google Scholar 

  10. Moricca MP, Varma SK. Isothermal oxidation behaviour of Nb–W–Cr alloys. Corros Sci. 2010;52(9):2964.

    Article  Google Scholar 

  11. Bewlay BP, Jackson MR, Gigliotti MFX. Niobium silicide high temperature in situ composites. In: Westbrook JH, Fleischer RL, editors. Intermetallic Compounds, Principles and Practice, vol. 3. Chichester: Wiley; 2002. 541.

    Chapter  Google Scholar 

  12. Subramanian PR, Mendiratta MG, Dimiduk DM. Advanced intermetallic alloys—beyond gamma titanium aluminides. Mater Sci Eng. 1997;239(4):1.

    Article  Google Scholar 

  13. Bewlay BP, Jackson MR, Zhao JC, Subramanian PR. A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans. 2003;34(10):2043.

    Article  Google Scholar 

  14. Brossmann U, Oehring M, Appel F, Hemker K J, Dimiduk D M, Clemens H. Structural Intermetallics. In: R Darolia, John J Lewandowski, CT Liu, PL Martin, DB Miracle, MV Nathal, editors. Warrendale: TMS; 2001. 99.

  15. Guo JM, Guo XP, Song SG. Oxidation behavior of Nb-Ti-Si base multielement alloys at 1250 °C. Acta Metall Sin. 2008;44(5):574.

    Google Scholar 

  16. Wan W, Zhou CG. Hot corrosion behaviour of Nbss/Nb5Si3 in situ composites in the mixture of Na2SO4 and NaCl melts. Corros Sci. 2013;74(6):345.

    Google Scholar 

  17. Cockeram BV, Rapp RA. Oxidation-resistant boron-and germanium-doped silicide coatings for refractory metals at high temperature. Mater Sci Eng. 1995;192:980.

    Article  Google Scholar 

  18. Zheng HZ, Lu SQ, Zhu JY, Liu GM. Effect of Al additions on the oxidation behavior of Laves phase NbCr2 alloys at 1373 and 1473 K. Int J Refract Met Hard Mater. 2009;27(3):659.

    Article  Google Scholar 

  19. Alvarez D, Varma SK. Characterization of microstructures and oxidation behavior of Nb–20Si–20Cr–5Al alloy. Corros Sci. 2011;53(6):2161.

    Article  Google Scholar 

  20. Kubaschewski. Oxidation of Metals and Alloys. 2nd ed. London: Butterworths, Academic Press; 1962. 321.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51101005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Na Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Z., Zhang, H., Weng, JF. et al. Oxidation behavior of Nb–24Ti–18Si–2Al–2Hf–4Cr and Nb–24Ti–18Si–2Al–2Hf–8Cr hypereutectic alloys at 1250 °C. Rare Met. 36, 168–173 (2017). https://doi.org/10.1007/s12598-015-0600-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0600-8

Keywords

Navigation