Skip to main content

Advertisement

Log in

Thermal–Mechanical Working of Spark Plasma Sintered Preforms Fabricated from Aluminum 2219 Powder

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of spark plasma sintering (SPS) coupled with hot upset forging of aluminum 2219 powder were studied. SPS was found to be an effective means of consolidating the powder as select specimens achieved full theoretical density. Although these as-sintered products also demonstrated a reasonable combination of tensile properties, they were greatly improved after forging. The most acute gains were observed in tensile ductility wherein three to four times improvements transpired. TEM analyses confirmed that forging manifested an appreciable disruption of the residual oxide networks present in the as-sintered product which was believed to be the primary driver of tensile property enhancements. SPS + forge products were also responsive to T87 heat treatment. Typical T87 values for tensile yield strength, UTS, and elongation to fracture were 350 MPa, 465 MPa, and 10 pct, respectively. Interestingly, these values were attainable over a wide range of sintering and forging temperatures. TEM analyses confirmed that θ′ was the dominant precipitate present in the SPS + forge-T87 products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. J. Hirsch: Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 1995–2002.

    Article  CAS  Google Scholar 

  2. J.-H. Schmitt and T. Lung: Comptes Rendus Phys., 2018, vol. 19, pp. 641–56.

    Article  CAS  Google Scholar 

  3. T.T.T. Trang, J.H. Zhang, J.H. Kim, A. Zargaran, J.H. Hwang, B.C. Suh, and N.J. Kim: Nat. Commun., 2018, vol. 9, pp. 1–6.

    Article  CAS  Google Scholar 

  4. F. Meng, J. Mckechnie, T. Turner, K.H. Wong, and S.J. Pickering: Environ. Sci. Technol., 2017, vol. 51, pp. 12727–36.

    Article  CAS  Google Scholar 

  5. J. Capus: Met. Powder Rep., 2016, vol. 71, pp. 318–20.

    Article  Google Scholar 

  6. D. Magid: Int. J. Powder Metall., 2018, vol. 54, pp. 7–13.

    Google Scholar 

  7. H. Queudet, S. Lemonnier, E. Barraud, J. Ghanbaja, N. Allain, and E. Ga: 2017, vol. 685, pp. 71–8.

    CAS  Google Scholar 

  8. L.J.B. Smith, S.F. Corbin, R.L. Hexemer, I.W. Donaldson, and D.P. Bishop: Metall. Mater. Trans. A, 2013, vol. 45, pp. 980–9.

    Google Scholar 

  9. 9 W.W. Zhang, Y. Hu, Z. Wang, C. Yang, G.Q. Zhang, K.G. Prashanth, and C. Suryanarayana: Mater. Sci. Eng. A, 2018, vol. 734, pp. 34–41.

    Article  CAS  Google Scholar 

  10. 10 Z. Cai, C. Zhang, R. Wang, C. Peng, K. Qiu, and Y. Feng: Mater. Des., 2015, vol. 87, pp. 996–1002.

    Article  CAS  Google Scholar 

  11. R.W. Cooke, R.L. Hexemer, I.W. Donaldson, and D.P. Bishop: J. Mater. Process., 2016, pp. 72–79.

  12. 12 M.R. Rafi, F. Ahmad, N. Ikram, R. Ahmad, and A. Salam: J. Appl. Sci., 2011, vol. 11, pp. 1857–61.

    Article  Google Scholar 

  13. 13 V. Malarvizhi, S Balasubramanian: Trans. Nonferrous Met. Soc. China, 2011, vol. 21, pp. 962–73.

    Article  CAS  Google Scholar 

  14. 14 V.A. Narasayya, P. Rambabu, M.K. Mohan, R. Mitra, and N.E. Prasad: Procedia Mater. Sci., 2014, vol. 6, pp. 322–30.

    Article  CAS  Google Scholar 

  15. 15 K.N. Manjunath and G.B. Krishnappa: Mater. Today Proc., 2018, vol. 5, pp. 3019–26.

    Article  CAS  Google Scholar 

  16. 16 R.N. Lumley, T.B. Sercombe, and B.B. Schaffer: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 457–63.

    Article  CAS  Google Scholar 

  17. 17 G.A. Sweet, M. Brochu, R.L. Hexemer Jr., I.W. Donaldson, and D.P. Bishop: Mater. Sci. Eng. A, 2014, vol. 608, pp. 273–82.

    Article  CAS  Google Scholar 

  18. 18 S. Devaraj, S. Sankaran, and R. Kumar: Acta Metall. Sin., 2013, vol. 26, pp. 761–71.

    Article  CAS  Google Scholar 

  19. N. Saheb: Adv. Mater. Sci. Eng., 2014, pp. 1–9.

  20. F. Saba, F. Zhang, S.A. Sajjadi, and M. Haddad-Sabzevar: in Spark Plasma Sintering of Materials, P. Cavaliere, ed., Springer, New York, 2019, pp. 119–59.

  21. 21 S.S. Deng, D.J. Wang, Q. Luo, Y.J. Huang, and J. Shen: Adv. Powder Technol., 2015, vol. 26, pp. 1696–701.

    Article  CAS  Google Scholar 

  22. 22 S. Mula, K. Mondal, S. Ghosh, and S.K. Pabi: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3757–63.

    Article  Google Scholar 

  23. 23 R.S. Maurya and T. Laha: Philos. Mag. Lett., 2016, vol. 96, pp. 313–21.

    Article  CAS  Google Scholar 

  24. 24 W.F. Smith: Structure and Properties of Engineering Alloys, 2 edition., McGraw-Hill Science/Engineering/Math, New York, 1993.

    Google Scholar 

  25. 25 R.K. Gupta, R. Panda, A.K. Mukhopadhyay, V.A. Kumar, P. Sankaravelayutham, and K.M. George: Met. Sci. Heat Treat., 2015, vol. 57, pp. 350–3.

    Article  CAS  Google Scholar 

  26. ASM Handbook. Volume 4. Heat Treating., 1991.

  27. 27 Q. Wang, Z. Li, S. Pang, X. Li, C. Dong, and P.K. Liaw: Entropy, 2018, vol. 20, p. 878.

    Article  CAS  Google Scholar 

  28. 28 Y. Deng, Z. Yin, and J. Huang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1780–6.

    Article  Google Scholar 

  29. 29 X. Huang, H. Zhang, Y. Han, W. Wu, and J. Chen: 2010, vol. 527, pp. 485–90.

    Google Scholar 

  30. E. Ghassemali, M.J. Tan, C.B. Wah, S.C.V. Lim, and A.E.W. Jarfors: in Friction effects during open-die micro-forging/extrusion processes: An upper bound approach, vol. 81, Procedia Engineering, 2014, pp. 1915–20.

  31. L. Liu, Y. Wu, and H. Gong: Materials (Basel)., https://doi.org/10.3390/ma11091496.

  32. J. Kang, Z.C. Feng, G.S. Frankel, I.W. Huang, G.Q. Wang, and A.P. Wu: Metall. Mater. Trans. A 2016, vol. 47A, pp. 4553–65.

    Article  Google Scholar 

  33. 33 H. Wang, Y. Yi, and S. Huang: J. Alloys Compd., 2016, vol. 685, pp. 941–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support via the Collaborative Research & Development grant CRDPJ 486528 - 15. Dr. Bernhard Mais (Kymera International) is acknowledged for the provision of the powdered metals employed. Laboratory assistance provided by colleagues at Dalhousie University (Randy Cooke, Dean Grijm, Greg Sweet, Angus MacPherson, Peter Jones and Mark Macdonald) and CanmetMATERIALS (Jonathan McKinley, Lucian Blaga and Catherine Bibby) is gratefully appreciated as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Bishop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 20, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amegadzie, M.Y., Amirkhiz, B.S., Williams, B.W. et al. Thermal–Mechanical Working of Spark Plasma Sintered Preforms Fabricated from Aluminum 2219 Powder. Metall Mater Trans A 51, 4647–4661 (2020). https://doi.org/10.1007/s11661-020-05865-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05865-3

Navigation