Skip to main content
Log in

Microstructural Evolution of Iron Based Alloys Produced by Spark Plasma Sintering Method

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of alloying additions, such as copper, carbon, and molybdenum with carbonyl iron powder, on the densification behavior, microstructural evolution, and mechanical properties of spark plasma sintered (SPS) compacts have been investigated in this work. The sintering temperature, pressure, and time during SPS were 1120°C, 30 MPa, and 5 min, respectively. Fe–2Cu–0.8C–0.6Mo was found to exhibit the highest density, hardness, and also tensile strength among all the compositions attempted. The microstructural examination of fractured surfaces of the sintered samples revealed the evidence of a mixed mode of fracture in all the alloy compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Salak, Ferrous Powder Metallurgy (Cambridge International Science, Cambridge, UK, 1995).

    Google Scholar 

  2. N. Verma and S. Anand, “Effect of carbon addition and sintering temperature on densification and micro-structural evolution of sinter-hardening alloys steels,” J. Undergrad. Mater. Res. 2, 53–60 (2006).

    Google Scholar 

  3. Felege Nahatibeb, A. Raja Annamalai, and A. Upadhyaya, “Effect of copper and graphite addition on sinterability of iron,” Trans. Indian Inst, Met. 64 (1–2), 81–84 (2011).

    Article  Google Scholar 

  4. T. Krantz, “Effect of density and composition on the dimensional stability and strength of iron–copper alloys,” Int. J Powder Metall. 5 (3), 35–43 (1969).

    Google Scholar 

  5. N. Dautzenberg, “Observation of sintering reactions in the Fe–Cu system by dilatometry and hot stage microscopy,” Arch. Eisenhuettenwes. 41, 1005–1010 (1970).

    Google Scholar 

  6. F. V. Lenel and T. Pecanha, “Observations on the sintering of compacts from a mixture of iron and copper powders,” Powder Metall. 16, 351 (1973).

    Article  Google Scholar 

  7. Y. Trudel and R. Angers, “Properties of iron copper alloys made from elemental or prealloyed powders,” Mod. Dev. Powder Metall. 6, 305 (1974).

    Google Scholar 

  8. A. Griffo and R. M. German, “Dimensional control in the sintering of iron–copper–carbon via particle surface area,” Int. J. Powder Metall. 30, 399–407 (1994).

    Google Scholar 

  9. A. Raja Annamalai, A. Upadhyaya, and D. Agrawal, “An investigation on microwave sintering of Fe, Fe–Cu and Fe–Cu–C alloys,” Bull. Mater. Sci. 36, 447–456 (2013).

    Article  Google Scholar 

  10. S. Jamil, G. Chadwick, “Investigation and analysis of Fe–Cu and Fe–Cu–C compacts,” Powder Metall. 28, 65–71 (1985).

    Article  Google Scholar 

  11. V. Mamedov, “Microstructure and mechanical properties of PM Fe–Cu–Sn alloys containing solid lubricants,” Powder Metall. 47, 173–179 (2004).

    Article  Google Scholar 

  12. A. Raja Annamalai, F. Nekatibeb, A. Upadhyaya, and D. K. Agrawal, “Effect of heating mode on sinterability of carbonyl iron compacts,” Mater. Res. Innov. 17 (1), 10–16 (2013).

    Article  Google Scholar 

  13. W. D. Wong-Ángel, L. Téllez-Jurado, J. F. Chávez-Alcalá, E. Chavira-Martínez, and V. F. Verduzco- Cedeño, “Effect of copper on the mechanical properties of alloys formed by powder metallurgy,” Mater. Des. 58, 12–18 (2014).

    Article  Google Scholar 

  14. A. P. Barbosa, G. S. Bobrovnitchii, A. L. Skury, R. S. Guimaraes, and M. Filgueira, “Structure, microstructure and mechanical properties of PM Fe–Cu–Co alloys,” Mater. Des. 31, 522–526 (2010).

    Article  Google Scholar 

  15. W. F. Wang, “Effect of alloying elements and processing factors on the microstructure and hardness of sintered and induction-hardened Fe–C–Cu alloys,” Mater. Sci. Eng., A 402, 92–97 (2005).

    Article  Google Scholar 

  16. T. K. Kandavel, R. Chandramouli, M. Manoj, B. Manoj, and D.K. Gupta, “Influence of copper and molybdenum on dry sliding wear behavior of sintered plain carbon steel,” Mater. Des. 50, 728–736 (2013).

    Article  Google Scholar 

  17. J. K. Baczewska, “The properties of Fe–Ni–Mo–Cu–B materials produced via liquid phase sintering,” Arch. Metall. Mater. 56, 789–796 (2011).

    Google Scholar 

  18. E. Dudrova, M. A. Grande, M. Rosso, M. Kabatova, R. Bidulsky, and E. Hryha, “Improvement of mechanical properties of Fe–Cr–Mo–[Cu–Ni]–C sintered steels by sinter hardening,” Mater. Sci. Forum 672, 31–38 (2011).

    Article  Google Scholar 

  19. Y. H. Lu, Z. Y. Xiao, L. Hu, F. Luo, Y. B. Wu, and D. H. Ni, “Ultra-high cycle fatigue behavior of warm compaction Fe–Cu–Ni–Mo–C sintered material,” Mater. Des. 55, 758–763 (2014).

    Article  Google Scholar 

  20. L. Shuangyu, H. Zhang, and H. Jiandong, “Effect of carbusintering on densification behavior and mechanical properties of Fe–2% Ni–x% Cu alloys,” Mater. Des. 32, 3686–3691 (2011).

    Article  Google Scholar 

  21. G. Straffelini, M. Benedetti, and V. Fontanari, “Damage evolution in sinter-hardening powder-metallurgy steels during tensile and fatigue loading,” Mater. Des. 61, 101–108 (2014).

    Article  Google Scholar 

  22. M. W. Wu, K. .S. Hwang, and K. H. Chuang, “Improved distribution of nickel and carbon in sintered steels through addition of chromium and molybdenum,” Powder Metall. 51, 160–165 (2008).

    Article  Google Scholar 

  23. H. Danninger, “Sintering of Mo alloyed P/M structural steels,” Powder Metall. Int. 20, 7–12 (1988).

    Google Scholar 

  24. S. C. Yoo, J. Choi, and I. H. Moon, “Sintering and properties of high carbon and Mo alloyed P/M steel,” Powder Metall. Int. 23, 216–220 (1991).

    Google Scholar 

  25. L. E. G. Cambronero, C. Fernandez, J. M. Torralba, and J. M. R. Prieto, “Influence of powders on final properties and microstructure of sintered molybdenum powders,” Powder Metall. Int. 24, 163–167 (1992).

    Google Scholar 

  26. S. S. Rathore, M. M. Salve, and V. V. Dabhade, “Effect of molybdenum addition on the mechanical properties of sinter-forged Fe–Cu–C alloys,” J. Alloys Compd. 649, 988–995 (2015).

    Article  Google Scholar 

  27. R. Orru, R. Lichen, A. M. Locci, and G. Cao, “Consolidation/synthesis of materials by electric current activated/assisted sintering”, Mater. Sci. Eng., R. 63, 127–287 (2009).

  28. Z. Shen, “Spark plasma sintering of alumina,” J. Am. Ceram. Soc. 85, 1921–1927 (2002).

    Article  Google Scholar 

  29. Z. A. Munir and D. V. Quach, “Electric current activation of sintering: A review of the pulsed electric current sintering process,” J. Am. Ceram. Soc. 94, 1–19, (2011).

    Article  Google Scholar 

  30. M. Tokita, in Handbook of Advanced Ceramics, Chapter 11.2.3: Spark Plasma Sintering (SPS) Method, Systems, and Applications, 2nd ed. (2013), pp. 1149–1177.

  31. S. J. Kang, Sintering: Densification, Grain Growth and Microstructure (Elsevier Butterworth–Heinemann, London, 2005).

    Google Scholar 

  32. MPIF Standard 10, “Tension test specimens for pressed and sintered metal powders, Standard test methods for Metal Powders and Powder Metallurgy Products, Metal Powder Industries Federation (Princeton, NJ, USA, 1991).

  33. H. Kuroki, G. Han, and K. Shinozaki, “Solution-reprecipitation mechanisms in Fe–Cu–C during liquid phase sintering,” Int. J. Powder Metall. 35 (2), 57–62 (1999).

    Google Scholar 

  34. F. V. Lenel, Powder Metallurgy Principles and Applications, Metal Powder Industries Federation (Princeton, NJ, USA, 1980).

    Google Scholar 

  35. H. Danninger, “Sintering of Mo alloyed P/M steels prepared from elemental powders,” Powder Metall. Int. 24, 163–167 (1992).

    Google Scholar 

  36. U. Engström, “Copper in P/M Steels,” Int. J. Powder Metall. 39 (4), 29–39 (2003).

    Google Scholar 

  37. A. Nadjafi Maryam Negari, R. S. Mamoory, A. Simchi, and N. Ehsani, “Determination of the physical and mechanical properties of iron-based powder materials produced by microwave sintering,” Powder Metall. Met. Ceram. 46, 423–428 (2007).

    Article  Google Scholar 

  38. Y. Peng, J. Yi., S. Luo, and Y. Guo, “Microstructure analysis of microwave sintered ferrous P/M alloys,” J. Wuhan Univ. Technol., Mater. Sci. Ed. 24, 214–217 (2009).

    Google Scholar 

  39. R. Roy, D. K. Agrawal, and J. Cheng, US Patent 6805835, 1994, pp. 1–6.

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge VIT University, Vellore for the support through Seed Grant for Research. Also, the authors acknowledge the partial support of DST-FIST available at VIT University, Vellore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Raja Annamalai.

Additional information

1The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuchamy, A., Annamalai, A.R., Karthikeyan, M. et al. Microstructural Evolution of Iron Based Alloys Produced by Spark Plasma Sintering Method. Phys. Metals Metallogr. 119, 678–684 (2018). https://doi.org/10.1134/S0031918X18070062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X18070062

Navigation