Skip to main content
Log in

Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Friction stir welding was performed on AA2219-T8 plates with 6.31 wt pct Cu. The thermal cycles were measured in different regions of the joint during welding. Differential scanning calorimetry and transmission electron microscopy were utilized to analyze the evolution of precipitates in the joint. The relationships between welding peak temperature, precipitate evolution, and microhardness distribution are discussed. The temperature in the heat-affected zone (HAZ) ranged from 453 K to 653 K (180 °C to 380 °C). The θ″ and some θ′ phases redissolved into the HAZ matrix, while the rest of the θ′ phases coarsened. In the thermomechanically affected zone (TMAZ), the temperature range was from 653 K to 673 K (380 °C to 400 °C), causing both θ″ phase and θ′ phase to redissolve. In the weld nugget zone (WNZ), all the θ″, θ′, and some of the θ phase (Al2Cu) redissolved. Abnormal θ particles were observed in the WNZ, including agglomerated θ with sizes around 100 to 1000 µm and a ring-shaped distribution of normal size θ particles. The formation of abnormal θ particles resulted from metal plastic flow during welding and the high content of Cu in AA2219. No abnormal θ particles were observed in joints of another AA2219 plate, which had a lower Cu content of 5.83 wt pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. G.V. Narayana, V.M Sharma, V. Diwakar, K.R Kuna, and R.C. Prasad: Sci. Technol. Weld. Joining, 2004, vol. 9, pp. 121–30.

    Article  Google Scholar 

  2. A. Venugopal, P.R. Narayanan, and S.C. Sharma: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1607–20.

    Article  Google Scholar 

  3. S. Malarvizhi and V. Balasubramanian: Mater. Des., 2011, vol. 32, pp. 1205–14.

    Article  Google Scholar 

  4. A. Venugopal, K. Sreekumar, and V.S. Raja: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3135–48.

    Article  Google Scholar 

  5. Q. Li, A.P. Wu, Y.J. Li, G.Q. Wang, D.Y. Yan, and J. Liu: Mater. Sci. Eng. A., 2015, vol. 623, pp. 38–48.

    Article  Google Scholar 

  6. Z.Y. Ma: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 642–58.

    Article  Google Scholar 

  7. P. Xue, B.L. Xiao, and Z.Y. Ma: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3091–3103.

    Article  Google Scholar 

  8. R.S. Mishra and Z.Y. Ma: Mater. Sci. Eng R., 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  9. C.S. Paglia and R.G. Buchheit: Mater. Sci. Eng. A., 2006, vol. 429, pp. 107–14.

    Article  Google Scholar 

  10. J.R. Dawes: Aluminum and Aluminum Alloys, ASM, Materials Park, OH, 1996.

    Google Scholar 

  11. S.Y. Hu, M.I. Baskes, M. Stan, and L.Q. Chen: Acta Mater., 2006, vol. 54, pp. 4699–4707.

    Article  Google Scholar 

  12. L.B. Ber: Mater. Sci. Eng. A., 2000, vol. 280, pp. 91–96.

    Article  Google Scholar 

  13. J.M. Papazian: Metall. Trans. A., 1981, vol. 12, pp. 269–80.

    Article  Google Scholar 

  14. S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo: Mater. Lett., 2005, vol. 59, pp. 629–32.

    Article  Google Scholar 

  15. M.J. Starink and P. V. Mourik: Metall. Trans. A., 1991, vol. 22, pp. 665–74.

    Article  Google Scholar 

  16. M.J. Starink: Int. Mater. Rev., 2004, vol. 49, pp. 191–226.

    Article  Google Scholar 

  17. J.R. Scully, T.O. Knight, and R.G. Buchheit: Corros. Sci., 1993, vol. 35, pp. 185–95.

    Article  Google Scholar 

  18. T. Ramgopal and G.S. Frankel: Corrosion, 2001, vol. 57, pp. 702–11.

    Article  Google Scholar 

  19. C. Luo, X. Zhou, G.E. Thompson, and A.E. Hughes: Corros. Sci., 2012, vol. 61, pp. 35–44.

    Article  Google Scholar 

  20. J. Li, N. Birbilis, and R.G. Buchheit: Corros. Sci., 2015, vol. 101, pp. 155–64.

    Article  Google Scholar 

  21. J. Li, B. Hurley, and R.G. Buchheit: J. Electrochem. Soc., 2015, vol. 162C, pp. 563–71.

    Article  Google Scholar 

  22. A.H. Lotfi and S. Nourouzi: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2792–2807.

    Article  Google Scholar 

  23. Y.C. Chen, J.C. Feng, and H.J. Liu: Mater. Charact., 2009, vol. 60, pp. 476–81.

    Article  Google Scholar 

  24. C. Huang and S. Kou: Weld. J., 2000, vol. 79, pp. 113s–20s.

    Google Scholar 

  25. G. Cao and S. Kou: Weld. J., 2005, vol. 84, pp. 1s–8s.

    Google Scholar 

  26. J. Kang, Z. Feng, G.S. Frankel, J. Li, G.S. Zou, and A.P. Wu: Corrosion, 2016, vol. 72, pp. 719–31.

    Article  Google Scholar 

  27. W. Ward: Proceedings of the 8th International Conference on Trends in Welding Research, ASM, Pine Mountain 2008.

  28. B. Li and Y.F. Shen: Mater. Des., 2011, vol. 31, pp. 3796–802.

    Article  Google Scholar 

  29. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, W.H. Bingel, and R.A. Spurling: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.

    Article  Google Scholar 

  30. T.L. Jolu, T.F. Morgeneyer, A. Denquin, M. Sennour, A. Laurent, J. Besson, and A.O.G. Lorenzon: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5531–44.

    Article  Google Scholar 

  31. M. Wade and A.P. Reynolds: Sci. Technol. Weld. Joining, 2010, vol. 15, pp. 64–9.

    Article  Google Scholar 

  32. P. Upadhyay and A.P. Reynolds: Mater. Sci. Eng. A., 2012, vol. 558, pp. 394–402.

    Article  Google Scholar 

  33. H. Izadi, R. Sandstrom, and A.P. Gerlich: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5635–44.

    Article  Google Scholar 

  34. J. Kang, R.D. Fu, G.H. Luan, C.L. Dong, and M. He: Corros. Sci., 2010, vol. 52, pp. 620–26.

    Article  Google Scholar 

  35. J. Kang, G.H. Luan, and R.D. Fu: Acta Metall. Sin., 2011, vol. 47, pp. 224–30.

    Google Scholar 

  36. J. Kang, J. Li, Z. Feng, G.S. Zou, G.Q. Wang, and A.P. Wu: Acta Metall. Sin., 2016, vol. 52, pp. 60–70.

    Google Scholar 

  37. Y. Li, L.E. Murr, and J.C. McClure: Scripta Mater., 1999, vol. 40, pp. 1041–46.

    Article  Google Scholar 

  38. K. Colligan: Weld. J., 1999, vol. 78, pp. 229s–37s.

    Google Scholar 

  39. T.U. Seidel and A.P. Reynolds: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2879–84.

    Article  Google Scholar 

  40. R. Fonda, A. Reynolds, C.R. Feng, K. Knipling, and D. Rowenhorst: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 337–44.

    Article  Google Scholar 

  41. Y. Morisada, H. Fujii, Y. Kawahito, K. Nakata and M. Tanaka: Scripta Mater., 2011, vol. 65, pp. 1085–88.

    Article  Google Scholar 

  42. H.N.B. Schmidt, T.L. Dickerson, and J.H. Hattel: Acta Mater., 2006, vol. 54, pp. 1199–209.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Kang.

Additional information

Manuscript submitted March 3, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Feng, ZC., Frankel, G.S. et al. Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates. Metall Mater Trans A 47, 4553–4565 (2016). https://doi.org/10.1007/s11661-016-3648-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3648-7

Keywords

Navigation