Skip to main content
Log in

Correlation of Local Constitutive Properties to Global Mechanical Performance of Advanced High-Strength Steel Spot Welds

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recent results have shown that the strength of resistance spot-welded joints made from advanced high-strength steels (AHSS) do not increase linearly with their base metal strength. While the martensite tempering and subsequent softening in a narrow heat affected zone (HAZ) of these joints has been reported as a primary cause for this degradation, the quantitative effects of HAZ softening on above nonlinearity in different steels have not been explored. In this research, the role of material heterogeneity on load-displacement characteristics of dual-phase and martensitic AHSS with initial martensite volume fractions of 16, 58, and 100 pct during tension-shear (TS) and cross-tension (CT) testing was modeled with finite element method and compared with experimental measurements of global deformation and fracture behavior. Results from low-strength steels showed that the location of HAZ failure transitions from hardened to softened regions, as the nugget diameter increases from 4 to 6 and 8 mm, even with the presence of softening in the HAZ. At the same time, the results from higher strength steels showed more sensitivity to the softened region in larger nugget diameters. This result elucidates that the nonlinearity in strength of high-strength AHSS spot welds in comparison to lower strength of mild steel, is due to their intrinsic brittleness, as well as the overall geometry of the weld nugget. Our results also suggest that, while HAZ softening plays a detrimental role in DP steels, it helps to improve the ultimate load and global extension in high strength grades. Finally, several uncertainties related to finite element simulations and experiments have been highlighted. The results from this study can help in optimizing the resistance spot-welding process parameters and the design of the part made from AHSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. 1. H. Rezayat, H. Ghassemi-Armaki, S. P. Bhat, S. Sriram and S. S. Babu: J Mater Sci, 2019, vol. 54, pp. 5825–5843.

    Article  CAS  Google Scholar 

  2. H. Rezayat, S. S. Babu and H. Ghassemi-Armaki: in Trends in Welding Research: Proceedings of the 10th International Conference, 2016.

  3. 3. H. Ghassemi-Armaki, S. Bhat, S. Kelley and S. Sadagopan: Welding Journal, 2017, vol. 96, pp. 104s-112s.

    Google Scholar 

  4. 4. H. Ghassemi-Armaki, E. Biro and S. Sadagopan: Isij International, 2017, vol. 57, pp. 1451-1460.

    Article  CAS  Google Scholar 

  5. 5. E. Biro, J. R. McDermid, S. Vignier and Y. N. Zhou: Materials Science and Engineering: A, 2014, vol. 615, pp. 395-404.

    Article  CAS  Google Scholar 

  6. 6. E. Biro, S. Vignier, C. Kaczynski, J. R. Mcdermid, E. Lucas, J. D. Embury and Y. N. Zhou: Isij International, 2013, vol. 53, pp. 110-118.

    Article  CAS  Google Scholar 

  7. 7. G. Krauss and A. R. Marder: Metall Trans, 1971, vol. 2, pp. 2343-2357.

    Article  CAS  Google Scholar 

  8. E. Biro, J. R. McDermid, J. D. Embury and Y. Zhou: Metallurgical and Materials Transactions A, 2010, vol. 41A, pp. 2348-2356.

    Article  CAS  Google Scholar 

  9. 9. V. H. B. Hernandez, S. S. Nayak and Y. Zhou: Metallurgical and Materials Transactions A, 2011, vol. 42, pp. 3115-3129.

    Article  Google Scholar 

  10. 10. V. H. B. Hernandez, S. K. Panda, Y. Okita and Y. N. Zhou: J Mater Sci, 2009, vol. 45, pp. 1638-1647.

    Article  Google Scholar 

  11. 11. E. Biro, J. R. McDermid, J. D. Embury and Y. Zhou: Metallurgical and Materials Transactions A, 2010, vol. 41, pp. 2348-2356.

    Article  Google Scholar 

  12. 12. M. Xia, E. Biro, Z. Tian and Y. N. Zhou: ISIJ international, 2008, vol. 48, pp. 809-814.

    Article  CAS  Google Scholar 

  13. N. Yamauchi, T. Taka, K. Kunishige and N. Nagao (1982) Iron Steel Inst. Jpn. 22, pp B107–B107.

    Google Scholar 

  14. E. Biro, S.S. Nayak and Y. Zhou: in Trends in Welding Research: Proceedings of the 9th International Conference, 2013, pp. 201–07.

  15. 15. S. Vignier, E. Biro and M. Herve: Welding in the World, 2014, vol. 58, pp. 297-305.

    Article  Google Scholar 

  16. 16. S. Dancette, D. Fabregue, R. Estevez, V. Massardier, T. Dupuy and M. Bouzekri: Engineering Fracture Mechanics, 2012, vol. 87, pp. 48-61.

    Article  Google Scholar 

  17. 17. S. Dancette, D. Fabrègue, V. Massardier, J. Merlin, T. Dupuy and M. Bouzekri: Engineering Fracture Mechanics, 2011, vol. 78, pp. 2259-2272.

    Article  Google Scholar 

  18. 18. S. Dancette, D. Fabrègue, V. Massardier, J. Merlin, T. Dupuy and M. Bouzekri: Engineering Failure Analysis, 2012, vol. 25, pp. 112-122.

    Article  CAS  Google Scholar 

  19. 19. M. Bouzekri, S. Dancette, V. Massardier, D. FabrÈgue, H. Klocker: Welding in the World, 2010, vol. 54, pp. 3-14.

    Article  CAS  Google Scholar 

  20. S.S. Nayak, Y. Zhou, V.H.B. Hernandez, and E. Biro: in Trends in Welding Research: Proceedings of the 9th International Conference, 2013, pp. 641–49.

  21. 21. M. Pouranvari and S. P. H. Marashi: Materials Science and Engineering: A, 2011, vol. 528, pp. 8337-8343.

    Article  CAS  Google Scholar 

  22. 22. Y. P. Yang, S. S. Babu, F. Orth and W. Peterson: Science and Technology of Welding and Joining, 2008, vol. 13, pp. 232-239.

    Article  Google Scholar 

  23. 23. M. Tamizi, M. Pouranvari and M. Movahedi: Science and Technology of Welding and Joining, 2017, vol. 22, pp. 327-335.

    Article  CAS  Google Scholar 

  24. 24. T. Huin, S. Dancette, D. Fabrègue and T. Dupuy: Metals, 2016, vol. 6, p. 111.

    Article  Google Scholar 

  25. L. Qian, X. Wang, C. Sun and A. Dai: Materials, 2019, Doi: 10.3390/ma12060900.

    Article  Google Scholar 

  26. 26. K. Paveebunvipak and V. Uthaisangsuk: Materials & Design, 2018, vol. 160, pp. 731-751.

    Article  CAS  Google Scholar 

  27. 27. K. Paveebunvipak and V. Uthaisangsuk: Journal of Materials Engineering and Performance, 2019, vol. 28, pp. 2017-2028.

    Article  CAS  Google Scholar 

  28. H. Rezayat, H. Ghassemi-Armaki, S. P. Bhat, S. Sriram, and S. S. Babu: J. Mater. Eng. Perform., 2020.

  29. 29. Y. J. Chao: Science and technology of welding and joining, 2003, vol. 8, pp. 133-137.

    Google Scholar 

  30. 30. K. Perzynski, A. Wrozyna, R. Kuziak, A. Legwand and L. Madej: Finite Elements in Analysis and Design, 2017, vol. 124, pp. 7-21.

    Article  Google Scholar 

  31. ASTM standard E8M: Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 1998.

  32. ASTM standard E3-01: Standard Practice for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2001.

  33. 33. Michael Smith: ABAQUS (2011) ‘ABAQUS Documentation’, Dassault Systèmes, Providence, RI, USA.

    Google Scholar 

  34. American Welding Society: AWS/SAE D8.9 M: Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive sheet steel materials, 2012.

  35. 35. H. G. Koenigsberger: Am Hist Rev, 1977, vol. 82, pp. 946-948.

    Article  Google Scholar 

  36. 36. G. B. An, S. K. Nam and T. W. Jang: Materials Science Forum, 2008, vol. 580-582, pp. 589-592.

    Article  Google Scholar 

  37. 37. C. C. Tasan, M. Diehl, D. Yan, C. Zambaldi, P. Shanthraj, F. Roters and D. Raabe: Acta Materialia, 2014, vol. 81, pp. 386-400.

    Article  CAS  Google Scholar 

  38. 38. C. C. Tasan, J. P. M. Hoefnagels, M. Diehl, D. Yan, F. Roters and D. Raabe: International Journal of Plasticity, 2014, vol. 63, pp. 198-210.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of this paper would like to acknowledge the financial support from ArcelorMittal Global R&D for carrying out this research. The authors would like to thank Dr. Shrikant P. Bhat from ArcelorMittal Global R&D for the helpful discussions related to the mechanical performance of AHSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rezayat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 10, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezayat, H., Ghassemi-Armaki, H., Sriram, S. et al. Correlation of Local Constitutive Properties to Global Mechanical Performance of Advanced High-Strength Steel Spot Welds. Metall Mater Trans A 51, 2209–2221 (2020). https://doi.org/10.1007/s11661-020-05714-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05714-3

Navigation