Skip to main content
Log in

A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The base metal (BM) and the heat affected zone (HAZ) of a resistance spot welded dual phase steel have been evaluated by nanoindentation hardness testing. Three different surface conditions have been explored on the BM for assessing the nanohardness response. Softening has been investigated along the sub-critical HAZ by making nanoindentations on individual phases such as ferrite and tempered martensite (TM) at various distances from the line of lower critical temperature Ac1. A broken appearance accompanied with sub-micron particles were consistently found on TM at 100 μm from the Ac1 line suggesting carbide precipitation along with partial recovery of martensite. The morphology of TM kept on changing while moving away from Ac1 towards the BM as the fraction of broken appearance was reduced and the sub-micron particles became finer. SEM observations resulted in good agreement with the nanohardness of the TM phase along the sub-critical HAZ. In contrast, microhardness results suggested the termination of tempering at a shorter distance with respect to Ac1 and hence a reduced extension of the softening region. The improved resolution for assessing softening through nanoindentation was due to the possibility of avoiding the contribution of the phase boundaries because of the smaller size of the indentation; this also permitted evaluation of TM at low peak temperatures far from Ac1 where early stages of tempering took place.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Committee on Automotive Applications (2006) In: International Iron and Steel Institute (eds.), Advanced High Strength Steel (AHSS) Application Guidelines Version 3, pp 1–4

  2. Tumuluru MD (2006) AWS sheet metal welding conference XII, Livonia, MI, paper 7–5

  3. Marya M, Wang K, Hector LG, Gayden X (2006) J Manuf Sci Eng 128:287

    Article  Google Scholar 

  4. Ghosh PK, Gupta PC, Avtar R, Jha BK (1990) ISIJ Int 30(3):233

    Article  CAS  Google Scholar 

  5. Baltazar Hernandez VH, Kuntz ML, Khan MI, Zhou Y (2008) Sci Technol Weld Join 13(8):769

    Article  CAS  Google Scholar 

  6. Khan MI, Kuntz ML, Zhou Y (2008) Sci Technol Weld Join 13(1):49

    CAS  Google Scholar 

  7. Panda SK, Sreenivasan N, Kuntz ML, Zhou Y (2008) J Eng Mater Technol 130:041003

    Article  Google Scholar 

  8. Xia M, Biro E, Tian Z, Zhou Y (2008) ISIJ Int 48(6):809

    Article  CAS  Google Scholar 

  9. Migiakis K, Papadimitriou GD (2009) J Mater Sci 44:6372. doi:10.1007/s10853-009-3878-9

    Article  CAS  Google Scholar 

  10. Raj B, Saroja S, Laha K, Karthikeyan T, Vijayalakshmi M, Bhanu Sankara Rao K (2009) J Mater Sci 44:2239. doi:10.1007/s10853-008-3199-4

    Article  CAS  ADS  Google Scholar 

  11. Tong W, Tao H, Jiang X, Zhang N, Marya MP, Hector LG, Gayden XQ (2005) Metall Mater Trans A 36A:2651

    Article  CAS  Google Scholar 

  12. Khan MI, Kuntz ML, Biro E, Zhou Y (2008) Mater Trans JIM 49(7):1629

    Article  CAS  Google Scholar 

  13. Ma C, Chen DL, Bhole SD, Boundreau G, Lee A, Biro E (2008) Mater Sci Eng A 485:334

    Article  Google Scholar 

  14. Milititsky M, Pakalnins E, Jiang C, Thompson AK (2003) SAE International, World Congress Detroit Michigan, paper 2003-01-0520

  15. Krauss G (1990) Steels, heat treatment and processing principles. ASM International, Materials Park, OH

    Google Scholar 

  16. Grange RA, Hribal CR, Porter LF (1977) Metall Mater Trans A 8A:1775

    CAS  ADS  Google Scholar 

  17. Venugopalan D, Kirkaldy JS (1977) Hardenability concepts with applications to steel. In: Proceedings of a symposium held at Chicago, pp 249–272

  18. Morra PV, Böttger AJ, Mittemeijer EJ (2001) J Therm Anal Calorim 64:905

    Article  CAS  Google Scholar 

  19. Jennett NM, Pharr GM, McHargue CJ (2006) Philos Mag 86(33–35):5153

    CAS  Google Scholar 

  20. Oliver WC, Pharr GM (1992) J Mater Res 7(6):1564

    Article  CAS  ADS  Google Scholar 

  21. Ghosh S, Pal TK, Mukherjee S, Das G, Ghosh S (2008) J Mater Sci 43:5474. doi:10.1007/s10853-008-2840-6

    Article  CAS  ADS  Google Scholar 

  22. Hirukawa H, Matsuoka S, Miyahara K, Furuya Y (2003) Mater Lett 58:321

    Article  Google Scholar 

  23. Ohmura T, Hara T, Tsuzaki K (2004) J Mater Res 19(1):79

    CAS  ADS  Google Scholar 

  24. Baltazar Hernandez VH, Panda SK, Kuntz ML, Zhou Y (2010) Mater Lett 64:207

    Article  CAS  Google Scholar 

  25. Resistance Welding Manufacturing Alliance (RWMA) (2003) Resistance welding manual, 4th edn. RWMA, Philadelphia, PA

    Google Scholar 

  26. ANSI/AWS/SAE/D8.9–97 (1997) Recommended practices for test methods for evaluating the resistance spot welding behavior of automotive steels. American Welding Society (AWS), USA

  27. http://www.rccm.co.jp/seihin/quickspot/index.html. Accessed 21 Jul 2009

  28. SORPAS® 8.0 (2007) Swantec Software and Engineering APS

  29. Okita Y (2008) Experimental measurements. JFE Steel Corporation, Internal Communications, Chiba, Japan

  30. Khan I, Kuntz ML, Chan K, Scotchmer N, Zhou Y (2007) SAE International, World Congress Detroit Michigan, paper 2007-01-1370

  31. Baltazar Hernandez VH, Kuntz ML, Zhou Y (2008) AWS sheet metal welding conference XIII, Livonia, MI, paper 1–3

  32. Garcia-Junceda A, Caballero FG, Capdevila C, de Garcia Andrés C (2007) Scr Mater 57:89

    Article  CAS  Google Scholar 

  33. Ohmura T, Tsuzaki K, Matsuoka S (2001) Scr Mater 45:889

    Article  CAS  Google Scholar 

  34. Furuhara T, Kobayashi K, Maki T (2004) ISIJ Int 44(11):1937

    Article  CAS  Google Scholar 

  35. Honeycombe RWK, Bhadeshia HKDH (1995) Steels microstructure and properties, 2nd edn. Arnold, Great Britain

    Google Scholar 

  36. Lei TC, Lin GY, Cui YX (1994) Fatigue Fract Eng Mater Struct 17(4):451

    Article  CAS  Google Scholar 

  37. Podder AS, Bhattacharjee D, Ray RK (2007) ISIJ Int 47(7):1058

    Article  CAS  Google Scholar 

  38. Fisher-Cripps AC (2004) Nanoindentation, 2nd edn. Springer, New York

    Google Scholar 

  39. Kim JY, Lee JJ, Lee YH, Jang J, Kwon D (2006) J Mater Res 21(12):2975

    Article  CAS  ADS  Google Scholar 

  40. Nix WD, Gao H (1998) J Mech Phys Solids 46(3):411

    Article  MATH  CAS  ADS  Google Scholar 

  41. Ma D, Wo Ong C, Wong SF (2005) J Mater Sci 40:2685. doi:10.1007/s10853-005-2106-5

    Article  CAS  ADS  Google Scholar 

  42. Thomson RC, Miller MK (1998) Acta Mater 46(6):2203

    Article  CAS  Google Scholar 

  43. Sathiya P, Aravindan S, Soundararajan R, Noorul Haq A (2009) J Mater Sci 44:114. doi:10.1007/s10853-008-3098-8

    Article  CAS  ADS  Google Scholar 

  44. Avazkonandeh-Gharavol MH, Haddad-Sabzevar M, Haerian A (2009) J Mater Sci 44:186. doi:10.1007/s10853-008-3103-2

    Article  CAS  ADS  Google Scholar 

  45. Zhang H, Senkara J (2006) Resistance welding fundamentals and applications. Taylor and Francis Group, Boca Raton, FL

    Google Scholar 

  46. Speich GR, Leslie WC (1972) Metall Trans 3:1043

    Article  CAS  Google Scholar 

  47. Joarder A, Jha JN, Ojha SN, Sarma DS (1990) Mater Charact 25:199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding from Auto21, one of the Networks of Centres for Excellence supported by the Canadian Government, The Initiative for Automotive Manufacturing Innovation (IAMI) supported by the Ontario Government, International Zinc Association (IZA), Belgium, Arcelor Mittal Dofasco and Huys Industries in Canada. V. H. Baltazar Hernandez would also like to acknowledge the support from CONACYT Mexico and the Autonomous University of Zacatecas Mexico. The author would like to acknowledge the comments and suggestions of Prof. Scott Lawson and Dr. Sashank Nayak from the Centre for Advanced Materials Joining at the University of Waterloo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Hugo Baltazar Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltazar Hernandez, V.H., Panda, S.K., Okita, Y. et al. A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation. J Mater Sci 45, 1638–1647 (2010). https://doi.org/10.1007/s10853-009-4141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4141-0

Keywords

Navigation