Skip to main content
Log in

Comprehensive Analysis of the Effect of Ausforming on the Martensite Start Temperature in a Fe-C-Mn-Si Medium-Carbon High-Strength Bainite Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The comprehensive effect of strain and ausforming temperature on the martensite start temperature (MS) of a medium-carbon bainite steel was investigated by thermal simulation, optical microscope, scanning electron microscope, etc. It is already known that small strain increases the MS, while larger strain decreases the MS. However, the effect of ausforming temperature on the MS has not been reported and clarified. In this study, the concepts of critical strain (εc) and saturated strain (εs) are proposed. The MS at the critical strain is equal to the MS of the nondeformed specimen. The saturation strain, which is first observed, is the strain value, and the MS does not further decrease with the increasing strain. The results show that the MS depends on the strain amount of ausforming but is not affected by the ausforming temperature. Moreover, with the increase of strain amount and ausforming temperature, the length of the martensite laths decreases. In addition, the hardness of the specimen increases with the increase of the ausforming strain amount, whereas the ausforming temperature has little effect on the hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, and G.H. Liu: Mater. Des., 2015, vol. 84, pp. 95–99.

    Article  CAS  Google Scholar 

  2. Y.X. Zhou, X.T. Song, J.W. Liang, Y.F. Shen, and R.D.K. Misra: Mater. Sci. Eng. A, 2018, vol. 718, pp. 267–76.

    Article  CAS  Google Scholar 

  3. J. Zhao, K. Guo, Y.M. He, Y.F. Wang, and T.S. Wang: Scripta Mater., 2018, vol. 152, pp. 20–23.

    Article  CAS  Google Scholar 

  4. G.H. Chen, G. Xu, H.S. Zurob, H.J. Hu, and X.L. Wan: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 573–80.

    Article  Google Scholar 

  5. C. García-mateo, F.G. Caballero, and H.K.D.H. Bhadeshia: Mater. Sci. Forum, 2015, vol. 112, pp. 285–88.

    Google Scholar 

  6. F.G. Caballero, C. García-mateo, and M.K. Miller: JOM, 2014, vol. 66, pp. 747–55.

    Article  CAS  Google Scholar 

  7. F.G. Caballero, C. García-mateo, C. Capdevila, and C. García de Andrés: Mater. Manuf. Process., 2007, vol. 22, pp. 502–06.

    Article  CAS  Google Scholar 

  8. M. Maalekian, E. Kozeschnik, S. Chatterjee, and H.K.D.H. Bhadeshia: Met. Sci. J., 2007, vol. 23, pp. 610–12.

    CAS  Google Scholar 

  9. S. Chatterjee, H.S. Wang, J.R. Yang, and H.K.D.H. Bhadeshia: Met. Sci. Technol., 2006, vol. 22, pp. 641–44.

    Article  CAS  Google Scholar 

  10. J.R. Strife, M.J. Carr, and G.S. Ansell: Metall. Trans. A, 1976, vol. 8A, pp. 1471–84.

    Google Scholar 

  11. M. Zhang, Y.H. Wang, C.L. Zheng, F.Z. Zhang, and T.S. Wang: Mater. Des., 2014, vol. 62, pp. 168–74.

    Article  CAS  Google Scholar 

  12. M. Zhang, Y.H. Wang, C.L. Zheng, F.Z. Zhang, and T.S. Wang: Mater. Sci. Eng. A, 2014, vol. 596, pp. 9–14.

    Article  CAS  Google Scholar 

  13. T. Sadasue, S. Suzuki, M. Suwa, S. Mitao, and K. Takahashi: Mater. Sci. Forum, 2003, vol. 426, pp. 1493–98.

    Article  Google Scholar 

  14. T.S. Wang, M. Zhang, Y.H. Wang, J. Yang, and F.C. Zhang: Scripta Mater., 2013, vol. 68, pp. 162–65.

    Article  CAS  Google Scholar 

  15. B.B. He, W. Xu, and M.X. Huang: Mater. Sci. Eng. A, 2014, vol. 609, pp. 141–46.

    Article  CAS  Google Scholar 

  16. Y.C. Liu, D.J. Wang, F. Sommer, and E.J. Mittemeijer: Acta Mater., 2008, vol. 56, pp. 3833–42.

    Article  CAS  Google Scholar 

  17. H.J. Hu, G. Xu, L. Wang, M.X. Zhou, and Z.L. Xue: Metall. Mater. Int., 2015, vol. 21, pp. 929–35.

    Article  CAS  Google Scholar 

  18. L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1994, vol. 184, pp. 17–19.

    Article  Google Scholar 

  19. G. Xu, H. Zou, and C.H. Bu: Adv. Mater. Res., 2011, vol. 415, pp. 974–78.

    Google Scholar 

  20. J.G. He, A.M. Zhao, C. Zhi, and H.L. Fan: Scripta Mater., 2015, vol. 107, pp. 71–74.

    Article  CAS  Google Scholar 

  21. H.J. Hu, H.S. Zurob, G. Xu, D. Embury, and G.R. Purdy: Mater. Sci. Eng. A, 2015, vol. 626, pp. 34–40.

    Article  CAS  Google Scholar 

  22. H.J. Hu, G. Xu, L. Wang, and M.X. Zhou: Steel Res. Int., 2017, vol. 83, pp. 1–7.

    Google Scholar 

  23. G.H. Chen, G. Xu, H.J. Hu, Q. Yuan, and Q.X. Zhang: Steel Res. Int., 2018, vol. 89, pp. 1–5.

    CAS  Google Scholar 

  24. M.T. Todinov, J.F. Knott, and M. Strangwood: Acta Mater., 1996, vol. 44, pp. 4909–15.

    Article  CAS  Google Scholar 

  25. J.R. Patel and M. Cohen: Acta Metall., 1953, vol. 1, pp. 531–38.

    Article  CAS  Google Scholar 

  26. J.X. Wu, B.H. Jiang, and T.Y. Hsu: Acta Metall. Sinica, 1988, vol. 36, pp. 1521–26.

    Article  CAS  Google Scholar 

  27. Y. Tian, A. Borgenstam, and P. Hedström: J. Alloys Compd., 2018, vol. 766, pp. 131–39.

    Article  CAS  Google Scholar 

  28. X.D. Zhang, J.Q. Ren, and X.D. Ding: Appl. Compos. Mater., 2019, vol. 26, pp. 455–67.

    Article  Google Scholar 

  29. M. Eskandari, M.A. Mohtadi-Bonab, A. Zarei-Hanzaki, A.G. Odeshi, and J.A. Szpunar: J. Mater. Eng. Perform., 2016, vol. 25, pp. 1611–20.

    Article  CAS  Google Scholar 

  30. M.F. Ashby: Philos. Mag. A, 1970, vol. 21, pp. 399–24.

    Article  CAS  Google Scholar 

  31. A. Kundu and D.P. Field: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3274–82.

    Article  Google Scholar 

  32. T. Song and B.C.D. Cooman: ISIJ Int., 2014, vol. 54, pp. 2394–03.

    Article  CAS  Google Scholar 

  33. S. Dash and N. Brown: Acta Metall., 1966, vol. 14, pp. 595–03.

    Article  CAS  Google Scholar 

  34. L. Samek, E.D. Moor, J. Penning, and B.C.D. Cooman: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 109–124.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51874216 and 51704217), the Major Projects of Technology Innovation of Hubei Province (Grant No. 2017AAA116), the Science and Technology Project of Wuhan (2018010402011187), the Hebei Joint Research Fund for Iron and Steel (E2018318013), the Youth Foundation of Wuhan University of Science and Technology (2015XZ002), the State Key Laboratory Science Foundation for Youths (2016QN10), and the State Scholarship Fund of China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaowen Xu or Guang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted February 22, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Chen, G., Xu, Y. et al. Comprehensive Analysis of the Effect of Ausforming on the Martensite Start Temperature in a Fe-C-Mn-Si Medium-Carbon High-Strength Bainite Steel. Metall Mater Trans A 50, 4541–4549 (2019). https://doi.org/10.1007/s11661-019-05376-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05376-w

Navigation