Skip to main content
Log in

High-Resolution EBSD Study of Adiabatic Shear Band and Neighboring Grains After Dynamic Impact Loading of Mn-Steel Used in Vehicle Structure

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

We report the results of the microstructural characterizations and micro-texture analysis of a lightweight austenitic steel deformed at high strain rate (1200 s−1) using a split Hopkinson pressure bar. Formation of adiabatic shear bands (ASB) and plastic deformation mechanisms within neighboring grains are investigated by high-resolution electron backscatter diffraction (HR-EBSD). HR-EBSD reveals formation of athermal ε-martensite and ά-martensite within the shear bands, resulting in the formation of a brittle intersection structure. Crack initiation and propagation is seen in intersection structure. The thermally induced ε-martensite follows Shoji-Nishiyama crystallographic orientation relationship with parent austenite phase, while ά-martensite shows Burgers relationship with ε-martensite. A detailed examination depicts the presence of deformation twins in grains adjacent to the ASB. Furthermore, strain-induced ε and ά martensite are formed in the neighboring grains of ASB. The micro-texture of martensite variants is discussed in ASB and in the neighboring grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Scott, S. Allain, M. Faral, and N. Guelton, Characterization of the TRIP/TWIP Effect in Austenitic Stainless Steels Using Stress Temperature-Transformation (STT) and deformation-Temperature Transformation (DTT) Diagrams, Rev. Metall., 2006, 6, p 293

    Article  Google Scholar 

  2. G. Frommeyer and U. Brux, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for high Energy Absorption Purposes, ISIJ Int., 2003, 43, p 438

    Article  Google Scholar 

  3. O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP/TWIP Steels Developments-Properties-Application, Int. J. Plast, 2000, 16, p 1391

    Article  Google Scholar 

  4. A. Asghari, A. Zarei-Hanzaki, and M. Eskandari, Temperature Dependence of Plastic Deformation Mechanisms in a Modified Transformation-Twinning Induced Plasticity Steel, Mater. Sci. Eng. A, 2013, 579, p 156

    Article  Google Scholar 

  5. M. Eskandari, A. Zarei-Hanzaki, J.A. Szpunar, M.A. Mohtadi-Bonab, A.R. Kamali, and M. Nazarian-Samani, Microstructure Evolution and Mechanical Behavior of a New Microalloyed High Mn Austenitic Steel During Compressive Deformation, Mater. Sci. Eng. A, 2014, 615, p 424

    Article  Google Scholar 

  6. I. Gutierrez-Urruti and D. Raabe, Influence of Al Content and Precipitation State on the Mechanical Behavior Of Austenitic High-Mn Low-Density Steels, Scripta Mater., 2013, 68, p 343

    Article  Google Scholar 

  7. A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels, Metall. Mater. Trans. A, 2009, 40, p 3076

    Article  Google Scholar 

  8. M. Eskandari, A. Najafizadeh, A. Kermanpur, and M. Karimi, Potential Application of nanocRystalline 301 Austenitic Stainless Steel in Lightweight Vehicle Structure, Mater. Des., 2009, 30, p 3872

    Article  Google Scholar 

  9. P. Sahu, S. Curtze, A. Das, B. Mahato, S.G. Chowdhury, and V. Kuokkala, Stability of Austenite and Quasi-Adiabatic Heating During High-Strain-Rate Deformation of Twinning-Induced Plasticity Steels, Scripta Mater., 2010, 62, p 8

    Article  Google Scholar 

  10. S.W. Hwang, J.H. Ji, and K.T. Park, Effects of Al Addition on High Strain Rate Deformation of Fully Austenitic High Mn Steels, Mater. Sci. Eng. A, 2011, 528, p 7275

    Google Scholar 

  11. A.G. Odeshi, S. Al-ameeri, S. Mirfakhraei, F. Yazdani, and M.N. Bassim, Deformation and Failure Mechanism in AISI, 4340 steel Under Ballistic Impact, Theo. Appl. Fract. Mech., 2006, 45, p 24

    Article  Google Scholar 

  12. C.G. Lee, W.J. Park, S. Lee, and K.S. Shin, Microstructural Development of Adiabatic Shear Bands Formed by Ballistic Impact in a Weldalite-049 Alloy, Metall. Mater. Trans. A, 1998, 29, p 477

    Article  Google Scholar 

  13. S.P. Timothy, The Structure of Adiabatic Shear Bands in Metals: A Critical Review, Acta Metal., 1987, 35, p 301

    Article  Google Scholar 

  14. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, New York, 1992

    Google Scholar 

  15. R.C. Glenn and W.C. Leslie, The Nature of “White Streaks” in Impacted Steel Armor Plate, Metall. Trans., 1971, 2, p 2947

    Article  Google Scholar 

  16. W. Chen, B. Song, Spit Hopkinson (Kolsky) Bar; Design, Testing and Applications, Mechanical Engineering Series, 2011, 1–27

  17. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, and T.R. McNelley, Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel, Acta Mater., 2003, 51, p 1307

    Article  Google Scholar 

  18. P. Sahu, A.S. Hamada, R.N. Ghosh, and L.P. Karjalainen, X-ray Diffraction Study on Cooling-Rate-Induced γ fcc → ε hcp Martensitic Transformation In Cast-Homogenized Fe-26Mn-0.14 C Austenitic Steel, Metall. Mater. Trans. A, 2007, 38, p 1991

    Article  Google Scholar 

  19. N. Li, Y.D. Wang, R. Lin Peng, X. Sun, P.K. Liawd, G.L. Wu, L. Wang, and H.N. Cai, Localized Amorphism After High-Strain-Rate Deformation in TWIP Steel, Acta Mater., 2011, 59, p 6369

    Article  Google Scholar 

  20. H. Yang, J.H. Zhang, Y. Xu, and M.A. Meyers, Microstructural Characterization of the Shear Bands in Fe-Cr-Ni Single Crystal by EBSD, J. Mater. Sci. Technol., 2008, 24, p 819

    Google Scholar 

  21. M.T. Perez-Prado, J.A. Hines, and K.S. Vecchio, Microstructural Evolution in Adiabatic Shear Bands in Ta and Ta-W Alloys, Acta Mater., 2001, 49, p 2905

    Article  Google Scholar 

  22. J.F.C. Lins, H.R.Z. Sandim, K.S. Vecchio, and D. Raabe, An EBSD Investigation on Deformation-Induced Shear Bands in Ti-Bearing IF-Steel Under Controlled Shock-Loading Conditions, Mater. Sci. Forum, 2005, 495–497, p 393

    Article  Google Scholar 

  23. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 32

    Article  Google Scholar 

  24. H.C. Roger, Adiabatic Plastic Deformation, Ann. Rev. Mat. Sci., 1979, 9, p 283

    Article  Google Scholar 

  25. H.J. Kestenbach and M.A. Meyers, The Effect of Grain Size on the Shock-Loading Response of 304-Type Stainless Steel, Metall. Trans. A, 1976, 7, p 1943

    Article  Google Scholar 

  26. A.S. Hamada, P. Sahu, S. Ghosh, L.P. Karjalainen, J. Levoska, and T. Oittinen, Kinetics of the γ → ε Martensitic Transformation in Fine-Grained Fe-26Mn-0.14 C Austenitic Steel, Metall. Mater. Trans. A, 2008, 39, p 462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Eskandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, M., Mohtadi-Bonab, M.A., Zarei-Hanzaki, A. et al. High-Resolution EBSD Study of Adiabatic Shear Band and Neighboring Grains After Dynamic Impact Loading of Mn-Steel Used in Vehicle Structure. J. of Materi Eng and Perform 25, 1611–1620 (2016). https://doi.org/10.1007/s11665-016-1923-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-1923-9

Keywords

Navigation