Skip to main content
Log in

Characterization and Control of the Compromise Between Tensile Properties and Fracture Toughness in a Quenched and Partitioned Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The enhancement of the fracture toughness is essential for opening the possible range of applications of advanced high-strength steels, while the focus in the literature is primarily on the strength–ductility compromise. A high fracture toughness is indeed needed for energy absorbing components as well as to limit edge cracking sensitivity during part forming. This study investigates the tensile properties and the fracture toughness of various quenched and partitioned microstructures. The fracture resistance is evaluated using double-edge notched tension tests. While the uniform elongation continuously increases with the retained austenite (RA) fraction, the fracture toughness shows a maximum at intermediate RA content. For the highest amount of RA, the relatively low fracture toughness is mainly attributed to the formation of brittle necklace of fresh blocky martensite in the fracture process zone due to a high stress triaxiality, inducing an intergranular fracture mode. For intermediate RA fraction, the RA morphology evolves from blocky to film type, leading to a transition from intergranular to ductile fracture mode, and the RA-to-martensite transformation contributes to a higher total work of fracture compared to tempered martensitic steel. A proper control of both the amount and morphology of RA during microstructure design is thus essential to generate the best compromise between tensile properties and fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. [1] J. Speer, D. Matlock, B. de Cooman, and J. Schroth: Acta Mater., 2003, vol. 51, pp. 2611-2622.

    Article  Google Scholar 

  2. [2] M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, and J. Sietsma: Acta Mater., 2001, vol. 59, pp. 6059-6068.

    Article  Google Scholar 

  3. [3] J. Mola and B.C. de Cooman: Scripta Mater., 2011, vol. 65, pp. 834-837.

    Article  Google Scholar 

  4. [4] J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219-237.

    Article  Google Scholar 

  5. [5] D. Edmonds, K. He, F. Rizzo, B. de Cooman, D. Matlock, and J. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25-34.

    Article  Google Scholar 

  6. [6] E. Ariza, M. Masoumi, and A. Tschiptschin: Mater. Sci. Eng. A, 2017, vol. 713, pp. 223-233.

    Article  Google Scholar 

  7. [7] Y. Toji, H. Matsuda, M. Herbig, and P. Choi, D. Raabe: Acta Mater., 2014, vol. 65, pp. 215-228.

    Article  Google Scholar 

  8. [8] J. Speer, E. De Moor, and A. Clarke: Mater. Sci. Technol., 2005, vol. 31, pp. 3-9.

    Article  Google Scholar 

  9. [9] P. Huyghe, L. Malet, M. Caruso, C. Georges, and S. Godet: Mater. Sci. Eng. A, 2017, vol. 701, pp. 254-263.

    Article  Google Scholar 

  10. [10] E.J. Seo, L. Cho, Y. Estrin, and B.C. de Cooman: Acta Mater., 2016, vol. 113, pp. 124-139.

    Article  Google Scholar 

  11. [11] F. HajyAkbary, J. Sietsma, G. Miyamoto, N. Kamikawa, R.H. Petrov, T. Furuhara, and M.J. Santofimia: Mater. Sci. Eng. A, 2016, vol. 677, pp. 505-514.

    Article  Google Scholar 

  12. [12] E. De Moor, S. Lacroix, A. Clarke, J. Penning, and J. Speer: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2586-2595.

    Article  Google Scholar 

  13. [13] Z.P. Xiong, A.G. Kostryzhev, L. Chen, and E.V. Pereloma: Mater. Sci. Eng. A, 2016, vol. 677, pp. 356-366.

    Article  Google Scholar 

  14. [14] H. Mohrbacher: Adv. Manuf., 2013, vol. 1, pp. 28-41.

    Article  Google Scholar 

  15. [15] P. Efthymiadis, S. Hazra, A. Clough, R. Lakshmi, A. Alamoudi, R. Dashwood, B. Shollock: Mater. Sci. Eng. A, 2017, vol. 701, pp. 174-186.

    Article  Google Scholar 

  16. [16] D. Casellas, A. Lara, D. Frómeta, D. Gutiérrez, S. Molas, L. Pérez, J. Rehrl, and C. Suppan: Metall. Mater. Trans. A, 2017, vol. 48, pp. 86-94.

    Article  Google Scholar 

  17. [17] G. Lacroix, T. Pardoen, and P.J. Jacques: Acta Mater., 2008, vol. 56, pp. 3900-3913.

    Article  Google Scholar 

  18. [18] I. de Diego-Calderón, I. Sabirov, J. Molina-Aldareguia, C. Föjer, R. Thiessen, and R. Petrov: Mater. Sci. Eng. A, 2016, vol. 657, pp. 136-146.

    Article  Google Scholar 

  19. [19] R. Wu, W. Li, S. Zhou, Y. Zhong, L. Wang, and X. Jin: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1892-1902.

    Article  Google Scholar 

  20. [20] P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay: Acta Mater., 2001, vol. 49, pp. 139-152.

    Article  Google Scholar 

  21. [21] S. M. C. van Bohemen: Mater. Sci. Technol., 2012, vol. 28, pp. 487-495.

    Article  Google Scholar 

  22. [22] N. van Dijk, A. Butt, L. Zhao, J. Sietsma, S. Offerman, J. Wright, and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439-5447.

    Article  Google Scholar 

  23. [23] J. Rice, P.C. Paris, and J.G. Merkle: ASTM STP, 1973, vol. 536, pp. 231-245.

    Google Scholar 

  24. T.L. Anderson: Fracture mechanics: fundamentals and applications, fourth ed., CRC press, 2017.

    Book  Google Scholar 

  25. [25] M.K. Hatami, T. Pardoen, G. Lacroix, P. Berke, P.J. Jacques, and T.J. Massart: J. Mech. Phys. Solids, 2017, vol. 98, pp. 201-221.

    Article  Google Scholar 

  26. [26] Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma: Mater. Sci. Eng. A, 2016, vol. 664, pp. 26-42.

    Article  Google Scholar 

  27. [27] K. Zhang, P. Liu, W. Li, Z. Guo, and Y. Rong: Mater. Sci. Eng. A, 2014, vol. 619, pp. 205-211.

    Article  Google Scholar 

  28. [28] E.V. Pereloma, A.A. Gazder and I.B. Timokhina: Encyclopedia of Iron, Steel and Their Alloys, Taylor and Francis Inc., New York, 2016, pp. 3088-3103.

    Book  Google Scholar 

  29. [29] Z.P. Xiong, A.A. Saleh, R.K.W. Marceau, A.S. Taylor, N.E. Stanford, A.G. Kostryzhev, and E.V. Pereloma: Acta Mater., 2017, vol. 134, pp. 1-15.

    Article  Google Scholar 

  30. [30] S. Zhang and K.O. Findley: Acta Mater., 2013, vol. 61, pp. 1895-1903.

    Article  Google Scholar 

  31. [31] W. Li, H. Gao, H. Nakashima, S. Hata, and W. Tian: Mater. Charact., 2016, vol. 118, pp. 431-437.

    Article  Google Scholar 

  32. [32] D. de Knijf, C. Föjer, L.A. Kestens, and R. Petrov: Mater. Sci. Eng. A, 2015, vol. 638, pp. 219-227.

    Article  Google Scholar 

  33. A. Pineau, A. Amine Benzerga, and T. Pardoen: Acta Mater., 2016, vol. 107, pp. 508-544.

    Article  Google Scholar 

  34. [34] T. Pardoen and J.W. Hutchinson: J. Mech. Phys. Solids, 2000, vol. 48, pp. 2467-2512.

    Article  Google Scholar 

  35. [35] D. Kwon and R.J. Asaro: Metall. Trans. A, 1990, vol. 21, pp. 117-134.

    Article  Google Scholar 

  36. [36] Z.P. Xiong, P.J. Jacques, A. Perlade and T. Pardoen: Scripta Mater., 2018, vol. 157, pp. 6-9.

    Article  Google Scholar 

  37. [37] Y. Li and T. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029-1040.

    Article  Google Scholar 

  38. [38] D. Tian, L.P. Karjalainen, B. Qian, and X. Chen: JSME Int. J. Ser. A, 1997, vol. 40, pp. 179-188.

    Google Scholar 

  39. [39] J. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda: Acta Metall., 1984, vol. 32, pp. 1779-1788.

    Article  Google Scholar 

  40. [40] F. Matsuda, K. Ikeuchi, H. Okada, I. Hrivnak, and H. Park: Q. J. Jpn. Weld. Soc., 1995, vol. 13, pp. 99-105.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by ArcelorMittal Global R&D Maizières Products in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Xiong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 6, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Z., Jacques, P.J., Perlade, A. et al. Characterization and Control of the Compromise Between Tensile Properties and Fracture Toughness in a Quenched and Partitioned Steel. Metall Mater Trans A 50, 3502–3513 (2019). https://doi.org/10.1007/s11661-019-05265-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05265-2

Navigation