Skip to main content
Log in

Parametric optimization of hot pressing powder metallurgy process for improved toughness and microhardness of multilayered B4C/AA7075 FGM

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The current study aims to develop a multilayered B4C/AA7075 functionally graded material (FGM) with high impact toughness as well as hardness. The FGM was fabricated through a hot compaction powder metallurgy process. Taguchi's L9 orthogonal array coupled with grey relational analysis was utilized to optimize the critical process parameters such as compaction pressure, temperature, and holding time. Charpy impact toughness and Vickers hardness tests were conducted to evaluate the toughness and microhardness of the specimens, respectively. SEM and EDS analyses were performed on FGM samples to examine their morphology, fractured surfaces, and elemental composition. The results indicated that the significant parameter configuration with a compaction pressure of 550 MPa, a temperature of 400 °C, and a holding time of 30 min achieved the highest grey relational grade, resulting in the development of FGM with improved toughness and maximum microhardness. Further, the optimum GRG result showed an improvement of 30.50% and 19.96% in toughness and microhardness compared to the preliminary run. Microstructural analysis of the optimized sample showed even dispersion of B4C reinforcement particles within the AA7075 matrix, with better bonding between the FGM layers. The fractured surface of optimized FGM exhibited brittle and ductile fracture modes, allowing better energy absorption before failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Complete data is available in the manuscript. The readers can use it to reproduce the work reported in this manuscript.

References

  1. Cpm, S.A., Varghese, B., Baby, A.: A review on functionally graded materials. 90–101 (2014)

  2. Singh, R., Bhavar, V., Kattire, P., Thakare, S., Patil, S., Singh, R.K.P.: A review on functionally gradient materials (FGMs) and their applications. IOP Conf. Ser. Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/229/1/012021

    Article  Google Scholar 

  3. Mostefa, A.H., Merdaci, S., Mahmoudi, N.: An Overview of Functionally Graded Materials “FGM.” Springer International Publishing, New York (2018)

    Book  Google Scholar 

  4. Bergmann, C.P.: Functionally Graded Materials 1996 (1997)

  5. Wu, C., Wu, J., Ma, K., Zhang, D., Xiong, S., Zhang, J., Luo, G., Chen, F., Shen, Q., Zhang, L., Lavernia, E.J.: Synthesis of AA7075-AA7075/B4C bilayer composite with enhanced mechanical strength via plasma activated sintering. J. Alloys Compd. 701, 416–424 (2017). https://doi.org/10.1016/j.jallcom.2017.01.065

    Article  Google Scholar 

  6. Chao, Z.L., Jiang, L.T., Chen, G.Q., Qiao, J., Z, Q., Yu, Z.H., Cao, Y.F., Wu, G.H.: The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction. Compos. B Eng. 161, 627–638 (2019). https://doi.org/10.1016/j.compositesb.2018.12.147

  7. Sharma, A., Srinivasan, K.V., Dixit, M., Gupta, A.K., Sujith, R.: Ballistic performance of functionally graded boron carbide reinforced Al–Zn–Mg–Cu alloy. J. Mater. Res. Technol. 18, 4042–4059 (2022). https://doi.org/10.1016/j.jmrt.2022.04.059

    Article  Google Scholar 

  8. Chouhan, M., Kumar, P., Thakur, L., Verma, S.K.: A comparative study on the ballistic performance of multilayered SiC/AA7075 functionally graded Armor materials. J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08398-z

    Article  Google Scholar 

  9. Huang, X., Yin, C., Ru, H., Zhao, S., Deng, Y., Guo, Y., Liu, S.: Hypervelocity impact damage behavior of B4C/Al composite for MMOD shielding application. Mater. Des. 186, 108323 (2020). https://doi.org/10.1016/j.matdes.2019.108323

    Article  Google Scholar 

  10. Wu, C., Shi, R., Zhang, J., Luo, G., Shen, Q., Gan, Z.: Synthesis of functionally graded AA7075-B 4 C composite with multi-level gradient structure. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.01.080

    Article  Google Scholar 

  11. Karakoç, H., Karabulut, Ş, Çıtak, R.: Study on mechanical and ballistic performances of boron carbide reinforced Al 6061 aluminum alloy produced by powder metallurgy. Compos. B Eng. 148, 68–80 (2018). https://doi.org/10.1016/j.compositesb.2018.04.043

    Article  Google Scholar 

  12. Wang, Y., Liu, Q., Zhang, B., Wang, H., Hazell, P.J., Li, B., Song, T., Li, L., Liu, F., Ye, F.: Improved ballistic performance of a continuous-gradient B4C/Al composite inspired by nacre. Mater. Sci. Eng. A (2023). https://doi.org/10.1016/j.msea.2023.145071

    Article  Google Scholar 

  13. Andraskar, N.D., Tiwari, G., Goel, M.D.: Impact response of ceramic structures - A review. Ceram. Int. 48, 27262–27279 (2022). https://doi.org/10.1016/j.ceramint.2022.06.313

    Article  Google Scholar 

  14. Saleh, B., Jiang, J., Fathi, R., Al-hababi, T., Xu, Q., Wang, L., Song, D., Ma, A.: 30 Years of functionally graded materials: an overview of manufacturing methods, applications and future challenges. Compos. B Eng. (2020). https://doi.org/10.1016/j.compositesb.2020.108376

    Article  Google Scholar 

  15. Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y., Bilotti, E., Essa, K., Zhang, H., Li, Z., Yan, F., Peijs, T.: A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Adv. Mater. Technol. (2020). https://doi.org/10.1002/admt.201900981

    Article  Google Scholar 

  16. Kumar, A., Gautam, V., Saraswat, P.: Synthesis techniques of functionally graded materials - a review. 9, (2019)

  17. Gupta, K., Saini, H., Zaidi, M.A.: Synthesis of Functionally Graded Material by Powder Metallurgy. 4, 163–165 (2017)

    Google Scholar 

  18. Karabulut, Ş, Karakoç, H., Bilgin, M., Canpolat, H., Krolczyk, G.M., Sarıkaya, M.: A comparative study on mechanical and ballistic performance of functionally graded Al6061 composites reinforced with B4C, SiC, and Al2O3. J. Mater. Res. Technol. 23, 5050–5065 (2023). https://doi.org/10.1016/j.jmrt.2023.02.116

    Article  Google Scholar 

  19. El, I.M., Bassiouny, G., Mahmoud, I.S.: Functionally graded materials classifications and development trends from industrial point of view. SN Appl. Sci. 1, 1–23 (2019). https://doi.org/10.1007/s42452-019-1413-4

    Article  Google Scholar 

  20. Balci, E., Sarikan, B., Übeyli, M., Camuşcu, N., Yildirim, R.O.: On the ballistic performance of the AA7075 based functionally graded material with boron carbide reinforcement. Kov. Mater. 51, 257–262 (2013). https://doi.org/10.4149/km-2013-4-257

    Article  Google Scholar 

  21. Kayabasi, I., Sur, G., Gokkaya, H., Sun, Y.: Functionally graded material production and characterization using the vertical separator molding technique and the powder metallurgy method. Eng. Technol. Appl. Sci. Res. 12, 8785–8790 (2022). https://doi.org/10.48084/etasr.5025

    Article  Google Scholar 

  22. Sharma, A., Tirumuruhan, B., Muthuvel, G.S., Gupta, A.K., Sujith, R.: Optimization of process parameters of boron carbide-reinforced Al–Zn–Mg–Cu matrix composite produced by pressure-assisted sintering. J. Mater. Eng. Perform. 31, 328–340 (2022). https://doi.org/10.1007/s11665-021-06210-4

    Article  Google Scholar 

  23. Overview, S., Taguchi, R., Review, M., Procedure, A., Brainstorming, Q.C., Between, I., Noise, F., Arrays, O., Arrays, A.O., Table, T., Graphs, L., Columns, U., Treatments, D., Systems, D., Approach, W.T., Function, L., Notes, G., Article, Q.D., Solutions, E.D., Arrays, C.O.: Design of Experiments (DOE) Using the Taguchi Approach (2004)

  24. Davim, J.P., Aveiro, P.: Design of Experiments in Production Engineering. Springer, New York (2016)

    Book  Google Scholar 

  25. Roy, R.K.: Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement. Wiley, Hoboken (2001)

    Google Scholar 

  26. Chakraborty, S., Datta, H.N., Chakraborty, S.: Grey Relational Analysis-Based Optimization of Machining Processes: A Comprehensive Review. Springer Nature, Singapore (2023)

    Google Scholar 

  27. Sindhu, D., Thakur, L., Chandna, P.: Multi-objective optimization of rotary ultrasonic machining parameters for quartz glass using Taguchi-grey relational analysis (GRA). SILICON 11, 2033–2044 (2019). https://doi.org/10.1007/s12633-018-0019-6

    Article  Google Scholar 

  28. Braide, T.K., Nwobi-Okoye, C.C., Ezechukwu, V.C.: Taguchi-Grey multi-response optimization of wear parameter of new nanocomposite formulation of Al–Si–Mg alloy reinforced with synthesis carbon nanotube and periwinkle shell nanoparticles. Int. J. Adv. Manuf. Technol. 120, 8363–8375 (2022). https://doi.org/10.1007/s00170-022-09163-7

    Article  Google Scholar 

  29. Kumar, D., Thakur, L.: A study of processing and parametric optimization of wear-resistant AZ91-TiB2 composite fabricated by ultrasonic-assisted stir casting process. Surf. Topogr. Metrol. Prop.Topogr. Metrol. Prop. 10, 25024 (2022). https://doi.org/10.1088/2051-672X/ac7065

    Article  Google Scholar 

  30. Yarasu, V., Jurci, P., Hornik, J., Krum, S.: Optimization of cryogenic treatment to improve the tribological behavior of Vanadis 6 steel using the Taguchi and grey relation approach. J. Mater. Res. Technol. 18, 2945–2962 (2022). https://doi.org/10.1016/j.jmrt.2022.03.145

    Article  Google Scholar 

  31. Chouhan, M., Thakur, L., Kumar, P.: Parametric optimization and impact behaviour of AA7075/SiC FGM fabricated by hot compaction powder metallurgy process. Mater. Today Commun. (2023). https://doi.org/10.1016/j.mtcomm.2023.107833

    Article  Google Scholar 

  32. Davim, J.P.: Statistical and Computational Techniques in Manufacturing. Springer, New York (2012)

    Book  Google Scholar 

  33. Srinivas, P.N.S., Babu P, R., Balakrishna, B.: Microstructural, mechanical and tribological characterization on the Al based functionally graded material fabricated powder metallurgy. Mater. Res. Express. (2020). https://doi.org/10.1088/2053-1591/ab6f41

  34. Kırmızı, G., Arık, H., Çinici, H.: Experimental study on mechanical and ballistic behaviours of silicon carbide reinforced functionally graded aluminum foam composites. Compos. B Eng. 164, 345–357 (2019). https://doi.org/10.1016/j.compositesb.2018.11.076

    Article  Google Scholar 

  35. Manohar, G., Pandey, K.M., RanjanMaity, S.: Effect of compaction pressure on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques. Mater. Today Proc. 38, 2157–2161 (2020). https://doi.org/10.1016/j.matpr.2020.05.194

    Article  Google Scholar 

  36. Chicco, D., Warrens, M.J., Jurman, G.: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 7, e623 (2021)

    Article  Google Scholar 

  37. Umasankar, V.: Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing. J. Alloys Compd. 582, 380–386 (2014). https://doi.org/10.1016/j.jallcom.2013.07.129

    Article  Google Scholar 

  38. Chandel, D.K., Thakur, L., Kumar, V.: Tribology international an investigation on the tribological behaviour of AlCrCuNiFe high entropy alloy optimized TIG weld cladding in room temperature conditions. Tribol. Int.. Int. 189, 108982 (2023). https://doi.org/10.1016/j.triboint.2023.108982

    Article  Google Scholar 

  39. Rathod, N.J., Chopra, M.K., Shelke, S.N., Chaurasiya, P.K., Kumar, R., Saxena, K.K., Prakash, C.: Investigations on hard turning using SS304 sheet metal component grey based Taguchi and regression methodology. Int. J. Interact. Des. Manuf. (2023). https://doi.org/10.1007/s12008-023-01244-5

    Article  Google Scholar 

  40. Hussain, M.Z., Khan, S., Sarmah, P.: Optimization of powder metallurgy processing parameters of Al2O3/Cu composite through Taguchi method with Grey relational analysis. J. King Saud Univ. Eng. Sci. 32, 274–286 (2020). https://doi.org/10.1016/j.jksues.2019.01.003

    Article  Google Scholar 

  41. Sindhu, D., Thakur, L., Chandna, P.: Parameter Optimization of Rotary Ultrasonic Machining on Quartz Glass Using Response Surface Methodology (RSM) (2019)

  42. Ibrahim, M.F., Ammar, H.R., Samuel, A.M., Soliman, M.S., Samuel, F.H.: On the impact toughness of Al-15 vol.% B4C metal matrix composites. Compos. B Eng. 79, 83–94 (2015). https://doi.org/10.1016/j.compositesb.2015.04.018

    Article  Google Scholar 

Download references

Acknowledgements

We express our heartfelt gratitude for the financial funding from the ARMREB, DRDO, Ministry of Defense, Government of India, under Grant No. ARMREB/CDSW/2018/201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalit Thakur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, M., Thakur, L. & Kumar, P. Parametric optimization of hot pressing powder metallurgy process for improved toughness and microhardness of multilayered B4C/AA7075 FGM. Int J Interact Des Manuf (2024). https://doi.org/10.1007/s12008-024-01841-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-024-01841-y

Keywords

Navigation