Skip to main content

Advertisement

Log in

Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-Treated Sheet Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fracture toughness K IC was measured by double edge-notched tension (DENT) specimens with fatigue precracks on quenching and partitioning (Q&P)-treated high-strength (ultimate tensile strength [UTS] superior to 1200 MPa) sheet steels consisting of 4 to 10 vol pct of retained austenite. Crack extension force, G IC, evaluated from the measured K IC, is used to analyze the role of retained austenite in different fracture behavior. Meanwhile, G IC is deduced by a constructed model based on energy absorption by martensite transformation (MT) behavior of retained austenite in Q&P-treated steels. The tendency of the change of two results is in good agreement. The Q&P-treated steel, quenched at 573 K (300 °C), then partitioned at 573 K (300 °C), holding for 60 seconds, has a fracture toughness of 74.1 MPa·m1/2, which is 32 pct higher than quenching and tempering steel (55.9 MPa·m1/2), and 16 pct higher than quenching and austempering (QAT) steel (63.8 MPa·m1/2). MT is found to occur preferentially at the tips of extension cracks on less stable retained austenite, which further improves the toughness of Q&P steels; on the contrary, the MT that occurs at more stable retained austenite has a detrimental effect on toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O. Grässel and G. Frommeyer: Mater. Sci. Technol., 1998, vol. 14, pp. 1213–17.

    Article  Google Scholar 

  2. F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, and C. García de Andrés: Mater. Des., 2009, vol. 30, pp. 2077–83.

    Article  Google Scholar 

  3. F.G. Caballero and H.K.D.H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251–57.

    Article  Google Scholar 

  4. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  Google Scholar 

  5. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25–34.

    Article  Google Scholar 

  6. X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu, and L. Wang: J. Mater. Res., 2009, vol. 24, p. 261.

    Google Scholar 

  7. J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, and D.V. Edmonds: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1–11.

  8. E. De Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee: Steel Res. Int., 2012, vol. 83, pp. 322–27.

  9. H.Y. Li, X.W. Lu, W.J. Li, and X.J. Jin: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1284–300.

    Article  Google Scholar 

  10. N. Zhong, X.D. Wang, L. Wang, and Y.H. Rong: Mater. Sci. Eng. A, 2009, vol. 506, pp. 111–16.

    Article  Google Scholar 

  11. Y. Wang, S. Zhou, Z.H. Guo, and Y.H. Rong: Trans. Tech. Publications, 2010, pp 37–40.

  12. ISO2566/1-1984(E): Steel—Conversion of Elongation Values, Part 1: Carbon and Alloy Steels, 1984.

  13. ASTM E8: M Standard Test Methods for Tension Testing of Metallic Materials (Metric), Annual Book of ASTM Standards, American Society for Testing and Materials, Philadelphia, 1996.

  14. E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2586–95.

    Article  Google Scholar 

  15. E. Paravicini Bagliani, M.J. Santofimia, L. Zhao, J. Sietsma, and E. Anelli: Mater. Sci. Eng. A, 2013, vol. 559, pp. 486–95.

  16. E.D. Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee: ISIJ Int., 2011, vol. 51, pp. 137–44.

    Article  Google Scholar 

  17. S. Zhou, K. Zhang, Y. Wang, J.F. Gu, and Y.H. Rong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8006–12.

    Article  Google Scholar 

  18. K. Zhang, M. Zhang, Z. Guo, N. Chen, and Y. Rong: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8486–91.

    Article  Google Scholar 

  19. H. Liu, X. Lu, X. Jin, H. Dong, and J. Shi: Scripta Mater., 2011, vol. 64, pp. 749–52.

    Article  Google Scholar 

  20. T. Tsuchiyama, J. Tobata, T. Tao, N. Nakada, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 532, pp. 585–92.

    Article  Google Scholar 

  21. J. Mola and B.C. De Cooman: Scripta Mater., 2011, vol. 65, pp. 834–37.

    Article  Google Scholar 

  22. D. Hauserová, M. Duchek, J. Dlouhý, and Z. Nový: Proc. Eng., 2011, vol. 10, pp. 2961–66.

    Article  Google Scholar 

  23. C.Y. Wang, J. Shi, W.Q. Cao, and H. Dong: Mater. Sci. Eng. A, 2010, vol. 527, pp. 3442–49.

    Article  Google Scholar 

  24. S.C. Hong, J.C. Ahn, S.Y. Nam, S.J. Kim, H.C. Yang, J.G. Speer, and D.K. Matlock: Metall. Mater. Int., 2007, vol. 13, pp. 439–45.

    Article  Google Scholar 

  25. M.J. Santofimia, L. Zhao, Y. Takahama, and J. Sietsma: Mater. Sci. Forum, 2010, vols. 638–642, pp. 3485–90.

  26. C. Kim, A.R. Johnson, and W.F. Hosford: Metall. Trans. A, 1982, vol. 13A, pp. 1595–605.

    Article  Google Scholar 

  27. Y. Tomita: Metall. Trans. A, 1988, vol. 19A, pp. 2513–21.

    Article  Google Scholar 

  28. D. Webster: Metall. Trans. B, 1971, vol. 2B, pp. 1857–62.

    Google Scholar 

  29. W.W. Gerberich, P.L. Hemmings, and V.F. Zackay: Metall. Trans. B, 1971, vol. 2B, pp. 2243–53.

    Article  Google Scholar 

  30. P.J. Jacques: Acta Mater., 2008, vol. 56, pp. 3900–913.

    Article  Google Scholar 

  31. H.K.D.H. Bhadeshia and R.W.K. Honeycombe: Steels: Microstructure and Properties, Butterworth-Heinemann, Burlington, MA, 2006.

    Google Scholar 

  32. X.-Kui Zhu and J.A. Joyce: Eng. Fract. Mech., 2012, vol. 85, pp. 1–46.

  33. J.D. Embury and G. Burger: Proc. of the 7 th International Conference on Strength of Metals and Alloys (ICSMA 7), vol. 3, 1985, pp. 1893–1915.

  34. J.D. Evensen, J. Lereim, and J.D. Embury: Toughness Characterization and Specifications for HSLA and Structural Steels, TMS-AIME, Warrendale, PA, 1976.

  35. ASTM-E399: Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials, 2009.

  36. G. Martin, S.K. Yerra, Y. Bréchet, M. Véron, J.-D. Mithieux, B. Chéhab, L. Delannay, and T. Pardoen: Acta Mater., 2012, vol. 60, pp. 4646–60.

    Article  Google Scholar 

  37. P. Jacques, Q. Furnémont, T. Pardoen, and F. Delannay: Acta Mater., 2001, vol. 49, pp. 139–52.

    Article  Google Scholar 

  38. G. Lacroix, T. Pardoen, and P.J. Jacques: Acta Mater., 2008, vol. 56, pp. 3900–913.

    Article  Google Scholar 

  39. N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag: Acta Mater., 2005, vol. 53, pp. 5439–47.

    Article  Google Scholar 

  40. F.A. McClintock and G.R. Irwin: ASTM STP, 1965, vol. 381, pp. 84–113.

    Google Scholar 

  41. J.E. Srawkey and W.F. Brown: Fracture Toughness Testing, Clearinghouse Fed. Sci. & Technol. Inf., 1965.

  42. W.F. Brown and J.E. Srawley: Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM International, West Conshohocken, PA, 1969.

    Google Scholar 

  43. S.D. Antolovich and B. Singh: Metall. Trans. B, 1971, vol. 2B, pp. 2135–41.

    Article  Google Scholar 

  44. G.R. Chanani, S.D. Antolovich, and W.W. Gerberich: Metall. Trans. B, 1972, vol. 3B, pp. 2661–72.

    Article  Google Scholar 

  45. E.R. Parker and V.F. Zackay: Eng. Fract. Mech., 1973, vol. 5, pp. 147–65.

    Article  Google Scholar 

  46. S.D Antolovich and G.R. Chanani: Eng. Fract. Mech., 1972, vol. 4, pp. 765–76.

    Article  Google Scholar 

  47. Z. Mei and J.W. Morris: Eng. Fract. Mech., 1991, vol. 39, pp. 569–73.

    Article  Google Scholar 

  48. K.V. Sudhakar and E.S. Dwarakadasa: Bull. Mater. Sci., 2000, vol. 23, pp. 193–99.

    Article  Google Scholar 

  49. S. Socrate: Massachusetts Institute of Technology, 1995.

  50. . R.G. Stringfellow: Dissertation Abstracts International (USA) 1992, vol. 52.

  51. H. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059–60.

    Article  Google Scholar 

  52. D.Q. Bai, A. Di Chiro, and S. Yue, Mater. Sci. Forum, 1998, vol. 284–286, pp. 253–62.

  53. H.-S. Yang and H.K.D.H. Bhadeshia: Scripta Mater., 2009, vol. 60, pp. 493–95.

    Article  Google Scholar 

  54. E. Jimenez-Melero, N.H. Van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. Van der Zwaag: Scripta Mater., 2007, vol. 56, pp. 421–24.

    Article  Google Scholar 

  55. S.-Jae Lee, S. Lee, and B.C. De Cooman: Scripta Mater., 2011, vol. 64, pp. 649–52.

  56. A. Basuki and E. Aernoudt: J. Mater. Process. Technol., 1999, vol. 89, pp. 37–43.

    Article  Google Scholar 

  57. H.K.D.H. Bhadeshia and D.V. Edmonds: Metall. Sci., 1983, vol. 17, pp. 411–19.

    Article  Google Scholar 

  58. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2331–41.

    Article  Google Scholar 

  59. D. Duchateau and M. Guttmann: Acta Metall., 1981, vol. 29, pp. 1291–97.

    Article  Google Scholar 

  60. P.J. Jacques, F. Delannay, and J. Ladrière: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2759–68.

    Article  Google Scholar 

  61. M. Takahashi and H.K.D.H. Bhadeshia: Mater. Trans., JIM, 1991, vol. 32, pp. 689–96.

    Article  Google Scholar 

  62. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438, pp. 25–34.

    Article  Google Scholar 

  63. S.K. Putatunda, A.V. Singar, R. Tackett, and G. Lawes: Mater. Sci. Eng. A, 2009, vols. 513–514, pp. 329–39.

  64. A. Kokosza and J. Pacyna: Arch. Mater. Sci., 2008, vol. 31 (2), pp. 87–90.

    Google Scholar 

Download references

Acknowledgments

This study is funded by National Science Foundation of China (No. 51174251) and the National Basic Research Program of China (973 Programs No. 2010CB630803). The authors would like to acknowledge Professor David Embury, University of McMaster, for a helpful discussion. The authors acknowledge Professor Nengyun Jin, Shanghai Jiaotong University for language polishing work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Jin.

Additional information

Manuscript submitted August 7, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, R., Li, W., Zhou, S. et al. Effect of Retained Austenite on the Fracture Toughness of Quenching and Partitioning (Q&P)-Treated Sheet Steels. Metall Mater Trans A 45, 1892–1902 (2014). https://doi.org/10.1007/s11661-013-2113-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2113-0

Keywords

Navigation