Skip to main content
Log in

Using In Situ Neutron Diffraction to Isolate Specific Features of Additively Manufactured Microstructures in 304L Stainless Steel and Identify Their Effects on Macroscopic Strength

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additive manufacturing of metal components results in unique microstructures with, necessarily, mechanical properties that are distinct from conventionally produced components. In this work, four distinct microstructural features associated with directed energy deposition of 304L stainless steels, their stability, and their influences on flow strength were examined. These were (1) high dislocation density comparable with deformed materials, (2) increased ferrite content, (3) local chemical heterogeneity, and (4) tortuous grain morphology. In situ neutron diffraction measurements were used to monitor the evolution of the as-built microstructure during post-build heat treatment and relate the specific microstructural features to the strength behavior of the material following the heat treatment. The increased flow strength of the additively manufactured material relative to wrought counterparts is found to be due primarily to an increased dislocation density in the as-built material. However, the increased dislocation density does not completely account for the increased strength and it is hypothesized that some of the additional strength is related to the unique AM grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. DD Gu, W Meiners, K Wissenbach, R Poprawe (2012) Int. Mater. Rev., 2012, 57:133-164.

    Article  Google Scholar 

  2. B. Berman (2012) Business Horizons, 5:155-162.

    Article  Google Scholar 

  3. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater., 2016, vol. 117, pp. 371-392.

    Article  Google Scholar 

  4. HK Rafi, NV Karthik, H Gong, TL Starr, BE Stucker (2013) J. Mater. Eng. Perform. 22:3872-3883.

    Article  Google Scholar 

  5. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci., 2018, vol. 92, pp. 112-224.

    Article  Google Scholar 

  6. YM Wang, T Voisin, JT McKeown, J Ye, NP Calta, Z Li, Z Zeng, Y Zhang, W Chen, TT Roehling, RT Ott, MK Santala, PJ Depond, MJ Matthews, AV Hamza, T Zhu (2017) Nat. Mater. 17:63-71.

    Article  Google Scholar 

  7. BM Morrow, TJ Lienert, CM Knapp, JO Sutton, MJ Brand, RM Pacheco, V Livescu, JS Carpenter, GT Gray (2018) Metall. Mater. Trans. A 49A: 3637-50.

    Article  Google Scholar 

  8. Z. Wang, T.A. Palmer, A.M. Beese, Acta Mater., 2016, vol. 110, pp. 226-235.

    Article  Google Scholar 

  9. B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater., 2015, vol. 87, pp. 309-320.

    Article  Google Scholar 

  10. P Akerfeldt, M-L Antti, R Pederson (2016) Mater. Sci. Eng. A 674: 428-437.

    Article  Google Scholar 

  11. E. Nishida, B. Song, M. Maguire, D. Adams, J. Carroll, J. Wise, J. Bishop, and T. Palmer: Dynamic compressive response of wrought and additive manufactured 304L stainless steels, in: Dymat 2015—11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, E. Cadoni, ed., 2015.

  12. G.T. Gray, III, V. Livescu, P.A. Rigg, C.P. Trujillo, C.M. Cady, S.R. Chen, J.S. Carpenter, T.J. Lienert, and S. Fensin: Structure/property (constitutive and dynamic strength/damage) characterization of additively manufactured 316L SS, in: Dymat 2015—11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, E. Cadoni, ed., 2015.

  13. M. Strantza, R. Vafadari, D. de Baere, B. Vrancken, W. van Paepegem, I. Vandendael, H. Terryn, P. Guillaume, D. van Hemelrijck (2016) Materials 9:15.

    Article  Google Scholar 

  14. J.J. Lewandowski and M. Seifi: Metal Additive Manufacturing: A Review of Mechanical Properties, in: Annual Review of Materials Research, D.R. Clarke, ed., 2016, vol. 46, pp. 151–86

  15. B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, J. Alloy Compd., 2012, vol. 541, pp. 177-185.

    Article  Google Scholar 

  16. W.E. Luecke, J.A. Slotwinski, Journal of Research of the National Institute of Standards and Technology, 2014, vol. 119, pp. 398-418.

    Article  Google Scholar 

  17. N.T. Aboulkhair, I. Maskery, C. Tuck, I. Ashcroft, N.M. Everitt, Mater. Des., 2016, vol. 104, pp. 174-182.

    Article  Google Scholar 

  18. M.E. Aydinoez, F. Brenne, M. Schaper, C. Schaak, W. Tillmann, J. Nellesen, T. Niendorf (2016) Mater. Sci. Eng. A 669: 246-258.

    Article  Google Scholar 

  19. Y. Zhai, D.A. Lados, E.J. Brown, G.N. Vigilante, International Journal of Fatigue, 2016, vol. 93, pp. 51-63.

    Article  Google Scholar 

  20. T.R. Smith, J.D. Sugar, J.M. Schoenung, C. SanMarchi (2018) JOM 70: 358-363.

    Article  Google Scholar 

  21. D.W. Brown, D.P. Adams, L. Balogh, J.S. Carpenter, B. Clausen, G. King, B. Reedlunn, T.A. Palmer, M.C. Maguire, S.C. Vogel (2017) Metall. Mater. Trans. A 48: 6055-6069.

    Article  Google Scholar 

  22. S.C. Vogel, M.A.M. Bourke, A.S. Losko, R. Pokharel, T.L. Ickes, J.F. Hunter, D.W. Brown, S.L. Voit, K.J. McClellan, and A. Tremsin, Los Alamos National Laboratory, 2016, pp. 125.

  23. B. Clausen, PhD. Technical University of Denmark, 1997.

  24. M. Gharghouri, G. Weatherly, J. Embury, and J. Root, Philos. Mag. A, 1999, vol. 79, pp. 1671–95.

  25. M.R. Daymond, C.N. Tome, M.A.M. Bourke (2000) Acta Mater. 48: 553-564.

    Article  Google Scholar 

  26. L. Balogh, D. Brown, P. Mosbrucker, F. Long, M. Daymond (2012) Acta Mater. 60:5567-5577.

    Article  Google Scholar 

  27. I. Lonardelli, N. Gey, H.R. Wenk, M. Humbert, S.C. Vogel, L. Lutterotti (2007) Acta Mater. 55:5718-5727.

    Article  Google Scholar 

  28. H.M. Reiche, S.C. Vogel, P. Mosbrucker, E.J. Larson, and M.R. Daymond, Rev. Sci. Instrum., 2012, vol. 83, p. 053901.

  29. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena. Elsevier Science, Amsterdam. 2004.

    Google Scholar 

  30. D.W. Brown, T.A. Sisneros, B. Clausen, S. Abeln, M.A.M. Bourke, B.G. Smith, M.L. Steinzig, C.N. Tome, S.C. Vogel (2008) Acta Mater. 57: 972-979.

    Article  Google Scholar 

  31. G.C. Kaschner, C.N. Tome, R.J. McCabe, A. Misra, S.C. Vogel, D.W. Brown (2007) Mater. Sci. Eng. A 463: 122-127.

    Article  Google Scholar 

  32. C. Donadille, R. Valle, P. Dervin, R. Penelle (1989) Acta Metall. 37: 1547-1571.

    Article  Google Scholar 

  33. U.F. Kocks, C.N. Tome, H.R. Wenk, Texture and Anisotropy, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  34. R. Pokharel, L. Balogh, D.W. Brown, B. Clausen, G.T. Gray III, V. Livescu, S.C. Vogel, and S. Takajo, Scripta. Mater., 2018.

  35. R. Tandon, T. Wilks, M. Gieseke, C. Noelke, S. Kaierle, and T.A. Palmer, Euro Powder Metallurgy Association (EPMA): AM—Special Processes and Materials Reims, Fr, 2015.

  36. D.W. Brown, A. Jain, S.R. Agnew, and B. Clausen: in Twinning and detwinning during cyclic deformation of Mg alloy AZ31B, T. Chandra, K. Tsuzaki, M. Militzer, and C. Ravindran, eds., Thermec 2006, Pts 1-5, 2007, pp. 3407-+.

  37. M.A.M. Bourke, D.C. Dunand, E. Ustundag, Appl. Phys. A, 2002, vol. A74, pp. S1707-S1709.

    Article  Google Scholar 

  38. D.W. Brown, M.A.M. Bourke, B. Clausen, D.R. Korzekwa, R.C. Korzekwa, R.J. McCabe, T.A. Sisneros, D.F. Teter (2009) Mater. Sci. Eng. A 512: 67-75.

    Article  Google Scholar 

  39. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion: Metallic Elements and Alloys, Plenum Publishing Company, New York, 1975.

    Book  Google Scholar 

  40. R.B. Vondreele, J.D. Jorgensen, C.G. Windsor, J. App. Crys., 1982, vol. 15, pp. 581-589.

    Article  Google Scholar 

  41. M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, B. Clausen, T. Lorentzen (1997) J. App. Phys. 82: 1554-62.

    Article  Google Scholar 

  42. M.R. Daymond (2004) J. App. Phys. 96: 4263-4272.

    Article  Google Scholar 

  43. I.C. Noyan, J.B. Cohen, Residual Stress-Measurement by Diffraction and Interpretation, Springer-Verlag, New York., 1987.

    Google Scholar 

  44. G. Ribarik, J. Gubicza, T. Ungar (2004) Mater. Sci. Eng. A 387:343-347.

    Article  Google Scholar 

  45. T. Ungar, J. Gubicza, G. Ribarik, A. Borbely (2001) J. App. Crys. 34:298-310.

    Article  Google Scholar 

  46. M. Wilkens (1970) Phys. Status Solidi A 2: 359-370.

    Article  Google Scholar 

  47. E.A. Owen, E.L. Yates, A.H. Sully, Proc. Phys. Soc, 1937, vol. 49, pp. 315.

    Article  Google Scholar 

  48. I.S. Smirnov, I.S. Monakhov, E.G. Novoselova, A.L. Udovskii, V.P. Kolotushkin (2013) Metally 2014:18-24.

    Google Scholar 

  49. S.L. Lu, H.P. Tang, Y.P. Ning, N. Liu, D.H. Stjohn, M. Qian (2015) Metall. Mater. Trans. A 46A:3824-3834.

    Article  Google Scholar 

  50. G.I. Taylor, J. Inst. Met., 1938, vol. 62, pp. 307-324.

    Google Scholar 

  51. R.E. Stoller, S.J. Zinkle, J. Nuc. Matl., 2000, vol. 283, pp. 349-352.

    Article  Google Scholar 

  52. MatWeb Material Property Data, http://www.matweb.com, 11-08-16

  53. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, Oxford, UK, 1982.

    Google Scholar 

  54. A. Cottrell (2009) Philos. Mag. Lett. 89, pp. 19-22.

    Article  Google Scholar 

  55. T.A. Saleh, B. Clausen, D.W. Brown, H. Choo, P.K. Liaw, M.A.M. Bourke, S.C. Vogel, R.A. Buchanan, D.L. Klarstrom, MRS Proceedings, 2011, vol. 840, pp. Q7.3.

  56. N. Shi, M.A.M. Bourke, J.A. Roberts, J.E. Allison (1997) Metall. Mater. Trans. A 28A:2741-2753.

    Article  Google Scholar 

  57. M.M. Francois, A. Sun, W.E. King, N. Henson, D. Tourret, C.A. Bronkhorst, N.N. Carlson, C.K. Newman, T. Haut, J. Bakosi, J.W. Gibbs, V. Livescu, S.A. Vander Wiel, A. Clarke, M.W. Schraad, T. Blacker, H. Lim, T. Rodgers, S. Owen, F. Abdeljawad, J. Madison, A.T. Anderson, J.L. Fattebert, R.M. Ferencz, N.E. Hodge, S.A. Khairallah, O. Walton (2017) Curr. Opin. Solid State Mater. Sci. 21: 198-206.

    Article  Google Scholar 

  58. C.A. Bronkhorst, J.R. Mayeur, V. Livescu, D.W. Brown, G.T.I. Gray, S.A. Vander Wiel, Int. J. Plas., 2018.

  59. A. Yadollahi, N. Shamsaei, Y. Hammi, M.F. Horstemeyer (2016) Mater. Sci. Eng. A 657:399-405.

    Article  Google Scholar 

  60. W.J. Poole, M.F. Ashby, N.A. Fleck (1996) Scripta. Mater. 34:559-564.

    Article  Google Scholar 

  61. S.H. Williams, D.W. Brown, B. Clausen, A. Russell, K.A. Gschneidner, Acta Mater., 2014, vol. 70, pp. 307-315.

    Article  Google Scholar 

  62. A.F. Padilha, R.L. Plaut, P.R. Rios (2003) ISIJ Int. 43:135-143.

    Article  Google Scholar 

  63. WebElements, https://www.webelements.com/iron/physics.html, 6-13-18

  64. M.R. Daymond, M. Preuss, B. Clausen (2007) Acta Mater. 55:3089-3102.

    Article  Google Scholar 

  65. B. Clausen, M.A.M. Bourke, D.W. Brown, E. Ustundag (2006) Mater. Sci. Eng. A 421:9-14.

    Article  Google Scholar 

  66. B. Clausen, S.Y. Lee, E. Ustundag, C.P. Kim, D.W. Brown, M.A.M. Bourke, Mater. Sci. Forum, 2002, vol. 404-7, pp. 553-558.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE which offers a user program supported by the National Nuclear Security Agency of the DOE. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Brown.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 6, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, D.W., Adams, D.P., Balogh, L. et al. Using In Situ Neutron Diffraction to Isolate Specific Features of Additively Manufactured Microstructures in 304L Stainless Steel and Identify Their Effects on Macroscopic Strength. Metall Mater Trans A 50, 3399–3413 (2019). https://doi.org/10.1007/s11661-019-05240-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05240-x

Navigation