Skip to main content

Advertisement

Log in

Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This work compares two metal additive manufacturing processes, selective laser melting (SLM) and electron beam melting (EBM), based on microstructural and mechanical property evaluation of Ti6Al4V parts produced by these two processes. Tensile and fatigue bars conforming to ASTM standards were fabricated using Ti6Al4V ELI grade material. Microstructural evolution was studied using optical and scanning electron microscopy. Tensile and fatigue tests were carried out to understand mechanical properties and to correlate them with the corresponding microstructure. The results show differences in microstructural evolution between SLM and EBM processed Ti6Al4V and their influence on mechanical properties. The microstructure of SLM processed parts were composed of an α′ martensitic phase, whereas the EBM processed parts contain primarily α and a small amount of β phase. Consequently, there are differences in tensile and fatigue properties between SLM- and EBM-produced Ti6Al4V parts. The differences are related to the cooling rates experienced as a consequence of the processing conditions associated with SLM and EBM processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, The Manufacturing of Hard Tools from Metallic Powders by Selective Laser Melting, J. Mater. Process. Technol., 2001, 111, p 210–213

    Article  CAS  Google Scholar 

  2. S.M. Gaytan, L.E. Murr, E. Martinez, J.L. Martinez, B.I. Machado, D.A. Ramirez, F. Medina, S. Collins, and R.B. Wicker, Comparison of Microstructures and Mechanical Properties for Solid and Mesh Cobalt-Base Alloy Prototypes Fabricated by Electron Beam Melting, Metall. Mater. Trans. A, 2010, 41A, p 3216–3227

    Article  Google Scholar 

  3. E. Brinksmeier, G. Levy, D. Meyer, and A.B. Spierings, Surface Integrity of Selective-Laser-Melted Components, CIRP Ann. Manuf. Technol., 2010, 59(1), p 601–606

    Article  Google Scholar 

  4. J.P. Kruth, G. Levy, F. Klocke, and T.H.C. Childs, Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing, CIRP Ann. Manuf. Technol., 2007, 56, p 730–759

    Article  Google Scholar 

  5. M.F. Zah and S. Lutzmann, Modelling and Simulation of Electron Beam Melting, Prod. Eng. Res. Dev., 2010, 4, p 15–23

    Article  Google Scholar 

  6. L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Microstructures and Mechanical Properties of Electron Beam-Rapid Manufactured Ti-6Al-4V Biomedical Prototypes Compared to Wrought Ti-6Al-4V, Mater. Charact., 2009, 60, p 96–109

    Article  CAS  Google Scholar 

  7. L. Thijs, F. Verhaeghe, T. Craeghs, J.V. Humbeeck, and J.P. Kruth, A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V, Acta Mater., 2010, 58, p 3303–3312

    Article  CAS  Google Scholar 

  8. B. Song, S. Dong, B. Zhang, H. Liao, and C. Coddet, Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V, Mater. Des., 2012, 35, p 120–125

    Article  CAS  Google Scholar 

  9. I. Yadroitsev, P. Bertrand, and I. Smurov, Parametric Analysis of the Laser Melting Process, Appl. Surf. Sci., 2007, 253(19), p 8064–8069

    Article  CAS  Google Scholar 

  10. R. Morgan, C.J. Sutcliffe, and W. O’Neill, Density Analysis of Direct Metal Laser Remelted 316L Stainless Steel Cubic Primitives, J. Mater. Sci., 2004, 39(4), p 1195–1205

    Article  CAS  Google Scholar 

  11. E. Yasa, J. Deckers, and J.P. Kruth, The Investigation of the Influence of Laser Re-Melting on Density, Surface Quality and Microstructure of Selective Laser Melting Parts, Rapid Prototyp. J., 2011, 17(5), p 312–327

    Article  Google Scholar 

  12. S.S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, The Origin of Microstructural Diversity, Texture, and Mechanical Properties in Electron Beam Melted Ti-6Al-4V, Metall. Mater. Trans. A., 2010, 41A, p 3422–3432

    Article  Google Scholar 

  13. L. Facchini, E. Magalini, P. Robotti, and A. Molinari, Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of Pre-Alloyed Powders, Rapid Prototyp. J., 2009, 15(3), p 171–178

    Article  Google Scholar 

  14. B. Vrancken, L. Thijis, J.P. Kruth, and J.V. Humbeeck, Heat Treatment of Ti6Al4V Produced by Selective Laser Melting—Microstructure and Mechanical Properties, J. Alloy Compd., 2012, 541, p 177–185

    Article  CAS  Google Scholar 

  15. ASM Handbook, Vol. 1, ASM International, Materials Park, OH, 1993, p 2071

  16. T. Vilaro, C. Colin, and J.D. Bartout, As-Fabricated and Heat Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting, Metall. Mater. Trans. A., 2011, 42, p 3190

    Article  CAS  Google Scholar 

  17. L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hogess, and K. Wissenbach, Ductility of Ti-6Al-4V Alloy Produced by Selective Laser Melting of Pre-Alloyed Powders, Rapid Prototyp. J., 2010, 16(6), p 450–459

    Article  Google Scholar 

  18. G. Chahine, M. Koike, T. Okabe, P. Smith, and R. Kovacevic, The Design and Production of Ti-6Al-4V ELI, Customized Dental Implants, JOM, 2008, 60(11), p 50–55

    Article  CAS  Google Scholar 

  19. G.E. Dieter, Mechanical Metallurgy, McGraw Hill, New York, 1986

    Google Scholar 

  20. M. Erdogan and S. Tekeli, The Effect of Martensitic Particle Size on Tensile Fracture of Surface-Carburized AISI, 8620 Steel with Dual Phase Core Microstructure, Mater. Des., 2002, 23, p 597–604

    Article  CAS  Google Scholar 

  21. T.S. Srivatsana, M. Kuruvilla, and L. Park, A Study at Understanding the Mechanisms Governing the High Cycle Fatigue and Final Fracture Behavior of the Titanium Alloy: Ti-4Al-2.5V, Mater. Sci. Eng. A., 2010, 527, p 435–448

    Article  Google Scholar 

  22. S.G. Ivanova, R.R. Biederman, and R.D. Sisson, Jr., Investigation of Fatigue Crack Initiation in Ti-6Al-4V During Tensile-Tensile Fatigue, J. Mater. Eng. Perform., 2002, 11(2), p 226–231

    Article  CAS  Google Scholar 

  23. R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie, Influence of Microstructure on High-Cycle Fatigue of Ti-6Al-4V: Bimodal vs. Lamellar Structures, Metall. Mater. Trans. A., 2002, 33A, p 899–918

    CAS  Google Scholar 

  24. J. Oh, N.J. Kim, S. Lee, and W. Lee, Correlation of Fatigue Properties and Microstructure in Investment Cast Ti-6Al-4V, Mater. Sci. Eng. A., 2003, 340, p 232–242

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Office of Naval Research (ONR), USA for support through grant #’s N00014-09-1-0147, N00014‐10‐1‐0800, and N00014-11-1-0689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent E. Stucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafi, H.K., Karthik, N.V., Gong, H. et al. Microstructures and Mechanical Properties of Ti6Al4V Parts Fabricated by Selective Laser Melting and Electron Beam Melting. J. of Materi Eng and Perform 22, 3872–3883 (2013). https://doi.org/10.1007/s11665-013-0658-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-013-0658-0

Keywords

Navigation