Skip to main content
Log in

Phase-stress partition during uniaxial tensile loading of a TiC-particulate-reinforced Al composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Using neutron diffraction, we measured during in situ loading the lattice elastic mean phase (LEMP) strains in the matrix and reinforcement of a 15 vol pct TiC-particulate-reinforced 2219 Al composite. From the strain components longitudinal to and transverse to loading, the in situ normal phase stresses (average normal stresses in the constituent phases) were obtained through Hooke’s law. The internal stress partition between the matrix and reinforcement, i.e., load sharing, can then be inferred. Internal stress development was also modeled using the finite-element method (FEM), showing good agreement with the experimental results. Both indicate that the relationship between the LEMP strains/phase stresses and the applied load noticeably deviates from linearity during composite microyielding, long before the nominal 0.2 pct proof stress is reached. The nonlinearity arises (despite the linear elastic relationship between phase stresses and LEMP strains) because the applied traction is not synonymous with the phase stresses, and the ratio of phase stresses may vary during loading. Notably, the morphology of the LEMP strain development with applied load differs in the directions parallel to or perpendicular to the load. The differences are explained by considering the evolution of local matrix plasticity. Thermal residual stresses and inelastic stress relaxation, driven by interfacial diffusion, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. Cox: Br. J. Appl. Phys., 1952, vol. 3, pp. 72–79.

    Article  Google Scholar 

  2. A. Dollar and P. Steif: Int. J. Solids Struct., 1988, vol. 24, pp. 789–803.

    Article  Google Scholar 

  3. D.C. Dunand and A. Mortensen: Acta Metall. Mater., 1991, vol. 39, pp. 1405–16.

    Article  CAS  Google Scholar 

  4. S.J. Zhou and W.A. Curtin: Acta Metall. Mater., 1995, vol. 43, pp. 3093–3104.

    Article  CAS  Google Scholar 

  5. K. Tanaka and T. Mori: Acta Metall., 1970, vol. 18, pp. 931–41.

    Article  CAS  Google Scholar 

  6. P.J. Withers, W.B. Stobbs, and O.B. Pedersen: Acta Metall., 1989, vol. 37, pp. 3061–84.

    Article  CAS  Google Scholar 

  7. J.D. Eshelby: Proc. R. Soc. Ser. A, 1957, vol. 241A, pp. 376–96.

    Google Scholar 

  8. N. Shi and R.J. Arsenault: Ann. Rev. Mater. Sci., 1994, vol. 24, pp. 321–57.

    Article  CAS  Google Scholar 

  9. R.J. Arsenault, L. Wang, and C.R. Feng: Acta Metall. Mater., 1991, vol. 39, pp. 47–57.

    Article  CAS  Google Scholar 

  10. S.V. Kamat, J.P. Hirth, and R. Mehrabian: Acta Metall., 1989, vol. 37, pp. 2395–2402.

    Article  CAS  Google Scholar 

  11. T. Christman, A. Needleman, and S. Suresh: Acta Metall., 1989, vol. 37, pp. 3029–50.

    Article  CAS  Google Scholar 

  12. W.S. Miller and F.J. Humphreys: Scripta Metall., 1991, vol. 25, pp. 33–38.

    Article  CAS  Google Scholar 

  13. J. Llorca, A. Martin, J. Ruiz, and M. Elices: Metall. Trans. A, 1991, vol. 22A, pp. 1575–88.

    Google Scholar 

  14. R.J. Arsenault and M. Taya: Acta Metall., 1987, vol. 35, pp. 651–59.

    Article  CAS  Google Scholar 

  15. A.J. Allen, M.T. Hutchings, C.G. Windsor, and C. Andreani: Adv. Phys., 1985, vol. 34, pp. 445–73.

    Article  CAS  Google Scholar 

  16. D.S. Kupperman: Ann. Rev. Mater. Sci., 1994, vol. 24, pp. 265–91.

    Article  CAS  Google Scholar 

  17. I.C. Noyan and J.B. Cohen: Residual Stress—Measurement by Diffraction and Interpretation, Springer-Verlag, New York, NY, 1987.

    Google Scholar 

  18. N. Shi, R.J. Arsenault, A.D. Krawitz, and L.F. Smith: Metall. Trans. A, 1993, vol. 24A, pp. 187–96.

    CAS  Google Scholar 

  19. P.B. Prangnell, T. Downes, P.J. Withers, and T. Lorentzen: Mater. Sci. Eng., 1995, vol. 197A, pp. 215–21.

    Google Scholar 

  20. A.J. Allen, M.A.M. Bourke, S. Dawes, M.T. Hutchings, and P.J. Withers: Acta Metall. Mater., 1992, vol. 40, pp. 2361–73.

    Article  CAS  Google Scholar 

  21. G.L. Povirk, M.G. Stout, M.A.M. Bourke, J.A. Goldstone, A.C. Lawson, M. Lovato, S.R. Nutt, and A. Needleman: Acta Metall. Mater., 1992, vol. 40, pp. 2391–2412.

    Article  CAS  Google Scholar 

  22. R.K. Viswanadham, S.K. Mannan, and B. Sprissler: Annual Report of Martin Marietta Lab, MML TR 87-66C, Martin Marietta Corporation, Bethesda, MD, 1987.

    Google Scholar 

  23. G.M. Vyletel, D.C. Van Aken, and J.E. Allison: Scripta Metall. Mater., 1991, vol. 25, pp. 2405–10.

    Article  CAS  Google Scholar 

  24. R. Mitra, M.E. Fine, and J.R. Weertman: J. Mater. Res., 1993, vol. 8, pp. 2370–79.

    CAS  Google Scholar 

  25. Measurement of Residual and Applied Stress Using Neutron Diffraction, M.T. Hutchings and A.D. Krawitz, eds. NATO ASI Series 216E, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992.

    Google Scholar 

  26. R.B. von Dreele, J.D. Jorgenen, and C.G. Windsor: J. Appl. Crystallogr., 1982, vol. 15, pp. 581–89.

    Article  Google Scholar 

  27. Z. Hashin and B.W. Rosen: J. Appl. Mech., 1964, vol. 31, pp. 223–32.

    Google Scholar 

  28. Y.L. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1994, vol. 42, pp. 77–97.

    Article  CAS  Google Scholar 

  29. Metals Handbook, Vol. 2—Properties and Selection: Nonferrous Alloys and Pure Metals, ASM, Metals Park, OH, 1979, pp. 86–88.

  30. CRC Materials Science and Engineering Handbook, 2nd ed., J.F. Shackelford, W. Alexander, and J.S. Park, eds., CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

  31. M.A.M. Bourke: LDRD Progress Report No. LA-13110-PR, Los Alamos National Laboratory, Los Alamos, NM, 1995, pp. 168–70.

  32. ABAQUS/Standard User’s Manual, v. 5.5, Hibbitt, Karlsson & Sorensen, Inc., Provindence, RI, 1995.

  33. L.F. Smith, A.D. Krawitz, P. Clarke, S. Saimoto, N. Shi, and R.J. Arsenault: Mater. Sci. Eng., 1992, vol. A159, pp. L13-L15.

    CAS  Google Scholar 

  34. T. Ericsson, J.L. Lebrun, P. Sainfort, B. Chenal, and P. Jarry: 2nd Int. Conf. on Residual Stresses, G. Beck, S. Denis, and A. Simon, eds., Elsevier Science Publishers Ltd., London, 1989, pp. 561–67.

    Google Scholar 

  35. L.C. Davis and J.E. Allison: Metall. Trans. A, 1993, vol. 24A, pp. 2487–96.

    CAS  Google Scholar 

  36. A.S. Khan and S. Huang: Continuum Theory of Plasticity, John Wiley & Sons, Inc., New York, NY, 1995, pp. 157–58.

    Google Scholar 

  37. J. Rösler, G. Bao, and A.G. Evans: Acta Metall. Mater., 1991, vol. 39, pp. 2733–38.

    Article  Google Scholar 

  38. Y.L. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1995, vol. 43, pp. 1701–22.

    Article  CAS  Google Scholar 

  39. N. Shi, B. Wilner, and R.J. Arsenault: Acta Metall. Mater., 1992, vol. 40, pp. 2841–54.

    Article  CAS  Google Scholar 

  40. N. Shi: Los Alamos National Laboratory, Los Alamos, NM, unpublished results, 1996.

  41. N. Shi, M.A.M. Bourke, J.A. Roberts, and J.E. Allison: in Modeling of Composites, S.P. Chen and M.P. Anderson, eds., TMS, Warrendale, PA, 1996, pp. 47–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, N., Bourke, M.A.M., Roberts, J.A. et al. Phase-stress partition during uniaxial tensile loading of a TiC-particulate-reinforced Al composite. Metall Mater Trans A 28, 2741–2753 (1997). https://doi.org/10.1007/s11661-997-0031-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0031-8

Keywords

Navigation