Skip to main content

Advertisement

Log in

In Situ Neutron Diffraction Study of the Influence of Microstructure on the Mechanical Response of Additively Manufactured 304L Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In situ neutron diffraction measurements were completed during tensile and compressive deformation of stainless steel 304L additively manufactured (AM) using a high power directed energy deposition process. Traditionally produced wrought 304L material was also studied for comparison. The AM material exhibited roughly 200 MPa higher flow stress relative to the wrought material. Crystallite size, crystallographic texture, dislocation density, and lattice strains were all characterized to understand the differences in the macroscopic mechanical behavior. The AM material’s initial dislocation density was about 10 times that of the wrought material, and the flow strength of both materials obeyed the Taylor equation, indicating that the AM material’s increased yield strength was primarily due to greater dislocation density. Also, a ~50 MPa flow strength tension/compression asymmetry was observed in the AM material, and several potential causes were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Int. Mater. Rev., 2012, vol. 57, pp. 133-164.

    Article  Google Scholar 

  2. S.A. Davis, J.M. Vitek, T.L. Hebble, Welding Journal, 1987, vol. 66, pp. S289-S300.

    Google Scholar 

  3. Z. Wang, T.A. Palmer, A.M. Beese, Acta Mater., 2016, vol. 110, pp. 226-235.

    Article  Google Scholar 

  4. B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater., 2015, vol. 87, pp. 309-320.

    Article  Google Scholar 

  5. P. Akerfeldt, M.-L. Antti, R. Pederson, Mater. Sci. Eng., A, 2016, vol. 674, pp. 428-437.

    Article  Google Scholar 

  6. E. Nishida, B. Song, M. Maguire, D. Adams, J. Carroll, J. Wise, J. Bishop, T. Palmer: in Dymat 2015—11th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, E. Cadoni, ed., 2015.

  7. G.T. Gray, III, V. Livescu, P.A. Rigg, C.P. Trujillo, C.M. Cady, S.R. Chen, J.S. Carpenter, T.J. Lienert, S. Fensin: in Dymat 2015—11th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, E. Cadoni, ed., 2015.

  8. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik: Appl. Phys. Rev., 2015, vol. 2, 041304

    Article  Google Scholar 

  9. B. Clausen: PhD. Technical University of Denmark, 1997.

  10. M. Gharghouri, G. Weatherly, J. Embury, J. Root, Phil. Mag. A, 1999, 7, vol. 79, pp. 1671-1695

    Article  Google Scholar 

  11. M.R. Daymond, C.N. Tome, M.A.M. Bourke, Acta Mater., 2000, vol. 48(2), pp. 553-564.

    Article  Google Scholar 

  12. L. Balogh, D. Brown, P. Mosbrucker, F. Long, M. Daymond, Acta Mater., 2012, vol. 60(15), pp. 5567-5577.

    Article  Google Scholar 

  13. S. Agnew, C. Tome, D. Brown, T. Holden, S. Vogel, Scr. Mater., 2003, vol. 48 (8), pp. 1003-1008.

    Article  Google Scholar 

  14. R. Tandon, T. Wilks, M. Gieseke, C. Noelke, S. Kaierle, T.A. Palmer: Euro Powder Metallurgy Association (EPMA): AM – Special Processes and Materials Reims, Fr, 2015.

  15. VAMAS-20, Technical Specification, ISO/TS 21432, 2005

  16. M.A.M. Bourke, D.C. Dunand, E. Ustundag, Appl. Phys. A, 2002, vol. A74, pp. S1707-S1709.

    Article  Google Scholar 

  17. H. Wenk, L. Lutterotti, S. Vogel, Nucl. Instrum. Methods Phys. Res. Sect. A, 2003, vol. 515(3), pp. 575-588.

    Article  Google Scholar 

  18. D.W. Brown, M.A. Okuniewski, T.A. Sisneros, B. Clausen, G.A. Moore, L. Balogh, J. Nuc. Matl., 2016, vol. 482, pp. 63-74.

    Article  Google Scholar 

  19. D.W. Brown, M.A.M. Bourke, B. Clausen, D.R. Korzekwa, R.C. Korzekwa, R.J. McCabe, T.A. Sisneros, D.F. Teter, Mater. Sci. Eng., A, 2009, vol. 512, pp. 67-75.

    Article  Google Scholar 

  20. R.B. Von Dreele, J. App. Crys., 1997, vol. 30, pp. 517-525.

    Article  Google Scholar 

  21. G. Ribarik, J. Gubicza, T. Ungar, Mater. Sci. Eng., A, 2004, vol. 387, pp. 343-347.

    Article  Google Scholar 

  22. L. Lutterotti, S. Matthies, H.-R. Wenk, A.J. Schultz, J.W. Richardson, J. App. Phys., 1997, vol. 81, pp. 594-600.

    Article  Google Scholar 

  23. H.R. Wenk, L. Lutterotti, S.C. Vogel, Powder Diffr., 2010, vol. 25(3), pp. 283-296.

    Article  Google Scholar 

  24. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion: Metallic Elements and Alloys, Plenum Publishing Company, New York, 1975.

    Book  Google Scholar 

  25. M.R. Daymond, M.A.M. Bourke, R.B. Von Dreele, B. Clausen, T. Lorentzen, J. App. Phys., 1997, vol. 82(4), pp. 1554-1562.

    Article  Google Scholar 

  26. M.R. Daymond, J. App. Phys., 2004, vol. 96(8), pp. 4263-4272.

    Article  Google Scholar 

  27. I.C. Noyan, J.B. Cohen, Residual Stress-Measurement by Diffraction and Interpretation, Springer-Verlag, New York., 1987.

    Google Scholar 

  28. T.M. Holden, J.H. Root, R.A. Holt, M. Hayashi, Physica B, 1995, vol. 213, pp. 793-796

    Article  Google Scholar 

  29. A.D. Krawitz, T.M. Holden, MRS Bulletin, 1990, vol. 15(11), pp. 57-64.

    Article  Google Scholar 

  30. T.M. Holden, R.A. Holt, G. Dolling, B.M. Powell, J.E. Winegar, Metall. Trans. A, 1988, vol. 19(9), pp. 2207-2214.

    Article  Google Scholar 

  31. T.M. Holden, R.A. Holt, A.P. Clarke, Mater. Sci. Eng. A, 1998, vol. 246(1-2), pp. 180-198.

    Article  Google Scholar 

  32. A.C. Larson, R.B. Von Dreele, Los Alamos National Lab, Los Alamos, NM, 1986.

    Google Scholar 

  33. T. Ungar, J. Gubicza, G. Ribarik, A. Borbely, J. App. Crys., 2001, vol. 34(3), pp. 298-310.

    Article  Google Scholar 

  34. M. Wilkens, Phys. Status Solidi A, 1970, vol. 2(2), pp. 359-370.

    Article  Google Scholar 

  35. T. Ungár, G. Tichy, J. Gubicza, R.J. Hellmig, Powder Diffr., 2005, vol. 20(4), pp. 366-375.

    Article  Google Scholar 

  36. H. Hu, Texture, 1974, vol. 1(4), pp. 233-258.

    Article  Google Scholar 

  37. U.F. Kocks, C.N. Tome, H.R. Wenk, Texture and Anisotropy, Cambridge University Press, Cambridge, 1998.

    Google Scholar 

  38. C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tome, S.R. Agnew, Int. J. Plas., 2010, vol. 26(12), pp. 1772-1791.

    Article  Google Scholar 

  39. Ledbetter HM (1984) Phys. Stat. Solid A, 85(1): 89-96.

    Article  Google Scholar 

  40. B. Clausen, T. Lorentzen, M.A.M. Bourke, M.R. Daymond: Mater. Sci. Eng. A, 1999, vol. 259(1):17-24.

    Article  Google Scholar 

  41. J.W. Simmons, Mater. Sci. Eng. A, 1996, vol. 207(2), pp. 159-169.

    Article  Google Scholar 

  42. R.P. Reed, Jom-Journal of the Minerals Metals & Materials Society, 1989, vol. 41(3), pp. 16-21.

    Article  Google Scholar 

  43. G.I. Taylor, J. Inst. Met., 1938, vol. 62, pp. 307-324.

    Google Scholar 

  44. E.O. Hall, Proceedings of the Physical Society of London Section B, 1951, vol. 64(381), pp. 747-753.

    Article  Google Scholar 

  45. N.J. Petch, Journal of the Iron and Steel Institute, 1953, vol. 174(1), pp. 25-28.

    Google Scholar 

  46. R.E. Stoller, S.J. Zinkle, J. Nuc. Mater., 2000, vol. 283, pp. 349-352.

    Article  Google Scholar 

  47. MatWeb Material Property Data, http://www.matweb.com, 11-08-16

  48. H.J. Frost, M.F. Ashby, Deformation Mechanism Maps, Pergamon Press, Oxford, UK, 1982.

    Google Scholar 

  49. A. Cottrell, Phil. Mag. Lett., 2009, vol. 89(1), pp. 19-22.

    Article  Google Scholar 

  50. P.G. Partridge, Met. Rev., 1967, vol. 12, pp. 169-194.

    Article  Google Scholar 

  51. D.W. Brown, I.J. Beyerlein, T.A. Sisneros, B. Clausen, C.N. Tome, Int. J. Plas., 2012, vol. 29, pp. 120-135.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the efforts of A. Kilgo for metallographic sectioning and J. Michael for electron microscopy. This work was supported, in part, by a Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Brown.

Additional information

Manuscript submitted April 3, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, D.W., Adams, D.P., Balogh, L. et al. In Situ Neutron Diffraction Study of the Influence of Microstructure on the Mechanical Response of Additively Manufactured 304L Stainless Steel. Metall Mater Trans A 48, 6055–6069 (2017). https://doi.org/10.1007/s11661-017-4330-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4330-4

Navigation