Skip to main content
Log in

Effect of Heat Treatment Combined with an Alternating Magnetic Field on Microstructure and Mechanical Properties of a Ni-Based Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of a two-step heat treatment including solution and aging heat treatments in an alternating magnetic field (AMF) on microstructure and mechanical properties of the Ni-based superalloy DZ483 was investigated. In the solution heat treatment, the AMF significantly reduced the chemical segregation. In the aging heat treatment, the application of the AMF was found to not only modify the partition ratios of some elements like Al and Ti between the γ′ precipitate and the γ matrix, but also to distinctly accelerate coarsening of γ′ precipitates and to result in a larger mean particle size. Additionally, the morphology of γ′ precipitates gradually evolved from a quasi cube without an AMF to a regular cubic shape in the AMF. Mechanical performance tests showed that hardness and tensile strength of the samples heat treated in the AMF were increased in comparison with those without an AMF. It is shown that the enhanced diffusivity in the AMF is mainly responsible for the change in microsegregation, particle size, and morphology evolution. Furthermore, the AMF promotes the solid solution strengthening and the order strengthening, both of which contribute to the improvement of mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X. Huang, M.C. Chaturvedi and N.L. Richards, Metall. Mater. Trans. A, 1996, vol. 27, pp. 785-790.

    Article  Google Scholar 

  2. G. E. Fuchs, Mater. Sci. Eng. A, 2001, vol. 300, pp. 52-60.

    Article  Google Scholar 

  3. J. J. Jackson, M. J. Donachie, M. Gell and R. J. Henricks, Metall. Trans. A, 1977, vol. 8, pp. 1615-1620.

    Article  Google Scholar 

  4. P. Caron and T. Khan, Mater. Sci. Eng., 1983, vol. 61, pp. 173-184.

    Article  Google Scholar 

  5. G.E. Fuchs, J. Mater. Eng. Perform., 2002, vol. 11, pp. 19-25.

    Article  Google Scholar 

  6. H. Pang, N. D’Souza, H. Dong, H. Stone and C. Rae, Metall. Mater. Trans. A 2016, vol. 47, pp. 889-906.

    Article  Google Scholar 

  7. K.R. Bain, M.L. Gambone, J.M. Hyzak and M.C. Thomas, Superalloys 1988 1988, pp. 13-22.

    Google Scholar 

  8. B. C. Wilson, J. A. Hickman and G. E. Fuchs, JOM, 2003, vol. 55, pp. 35-40.

    Article  Google Scholar 

  9. M. V. Nathal, Metall. Trans. A, 1987, vol. 18, pp. 1961-1970.

    Article  Google Scholar 

  10. J. Andersson, G. P. Sjöberg, L. Viskari and M. Chaturvedi, Mater. Sci. Technol., 2013, vol. 29, pp. 43-53..

    Article  Google Scholar 

  11. D.U. Furrer, R. Shankar and C White, JOM, 2003, vol. 55, pp. 32-34.

    Article  Google Scholar 

  12. H. Pang, L. Zhang, R. Hobbs, H. Stone and C. Rae, Metall. Mater. Trans. A 2012, vol. 43, pp. 3264-3282.

    Article  Google Scholar 

  13. B. Zhang, J. Cui and G. Lu, Mater. Sci. Eng. A, 2003, vol. 355, pp. 325-330.

    Article  Google Scholar 

  14. C. Stelian, Y. Delannoy, Y. Fautrelle and T. Duffar, J. Cryst. Growth, 2004, vol. 266, pp. 207-215.

    Article  Google Scholar 

  15. G.M. Poole, M. Heyen, L. Nastac and N. El-Kaddah, Metall. Mater. Trans. B, 2014, vol. 45, pp. 1834-1841.

    Article  Google Scholar 

  16. B. D. Cullity and C. W. Allen, Acta Metall., 1965, vol. 13, pp. 933-935.

    Article  Google Scholar 

  17. X. Liu, J. Cui, X. Wu, Y. Guo and J. Zhang, Scripta Mater., 2005, vol. 52, pp. 79-82.

    Article  Google Scholar 

  18. X. Hu, L. Peng, S. Qian, P. Fu, W. Ding, Mater. Lett., 2014, vol. 123, pp. 238-241.

    Article  Google Scholar 

  19. X. Liu, J. Cui, E. Wang, and J. He: Mater. Sci. Eng. A, 2005, vol. 402, pp. 1–4.

  20. Y. Z. Liu, L. H. Zhan, Q. Q. Ma, Z. Y. Ma and M. H. Huang, J. Alloys Compd., 2015, vol. 647, pp. 644-647.

    Article  Google Scholar 

  21. C. Li, G. Guo, Z. Yuan, W. Xuan, X. Li, Y. Zhong and Z. Ren, J. Alloys Compd. 2017, vol. 720, pp. 272-276.

    Article  Google Scholar 

  22. M. Flemings, D. Poirier, R. Barone, H. Brody, J. Iron Steel Inst. 1970, vol. 208, pp. 371-381.

    Google Scholar 

  23. M.N. Gungor, Metall. Trans. A, 1989, vol. 20, pp. 2529-2533.

    Article  Google Scholar 

  24. M. Ganesan, D. Dye, P. Lee, Metall. Mater. Trans. A, 2005, vol. 36, pp. 2191-2204.

    Article  Google Scholar 

  25. M. Seyring, X. Song, M. Rettenmayr, ACS Nano, 2011, vol. 5, pp. 2580-2586.

    Article  Google Scholar 

  26. R. Völkl, U. Glatzel and M. Feller-Kniepmeier, Acta Mater., 1998, vol. 46, pp. 4395-4404.

    Article  Google Scholar 

  27. A. G. Khachaturyan, S. V. Semenovskaya and J. W. Morris, Acta Metall., 1988, vol. 36, pp. 1563-1572.

    Article  Google Scholar 

  28. T. Miyazaki and M. Doi, Mater. Sci. Eng. A, 1989, vol. 110, pp. 175-185.

    Article  Google Scholar 

  29. A.A. Hopgood and J.W. Martin, Mater. Sci. Technol., 1986, vol. 2, pp. 543-546.

    Article  Google Scholar 

  30. J. Lapin, M. Gebura, T. Pelachová and M. Nazmy, Kovove Mater., 2008, vol. 46, pp. 313-322.

    Google Scholar 

  31. N. Warnken, D. Ma, A. Drevermann, R. C. Reed, S. G. Fries and I. Steinbach, Acta Mater. 2009, vol. 57, pp. 5862-5875.

    Article  Google Scholar 

  32. R. Schmidt and M. Feller-Kniepmeier, Scripta Metall. 1992, vol. 26, pp. 1919-1924.

    Article  Google Scholar 

  33. F. Pyczak, B. Devrient and H. Mughrabi, Superalloys 2004, 2004, pp. 827-836.

    Article  Google Scholar 

  34. Y. Mishima, S. Ochiai and T. Suzuki, Acta Metall., 1985, vol. 33, pp. 1161-1169.

    Article  Google Scholar 

  35. J.K. Tien and R.P. Gamble, Metall. Trans., 1972, vol. 3, pp. 2157-2162.

    Article  Google Scholar 

  36. T. Murakumo, T. Kobayashi, Y. Koizumi and H. Harada, Acta Mater., 2004, vol. 52, pp. 3737-3744.

    Article  Google Scholar 

  37. R.C. Reed, D.C. Cox and C. Rae, Mater. Sci. Technol. 2007, vol. 23, pp. 893-902.

    Article  Google Scholar 

  38. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  39. C. Wagner, Z. Elektrochem, 1961, vol. 65, pp. 581-591.

    Google Scholar 

  40. Y. Zhang, N. Gey, C. He, X. Zhao, L. Zuo, C. Esling, Acta Mater., 2004, vol. 52, pp. 3467-3474.

    Article  Google Scholar 

  41. G. Urbain and E. Übelacker, Adv. Phys., 1967, vol. 16, pp. 429-438.

    Article  Google Scholar 

  42. F. R. de Boer, C. J. Schinkel, J. Biesterbos and S. Proost, J. Appl. Phys., 1969, vol. 40, pp. 1049-1055.

    Article  Google Scholar 

  43. A. J. Ardell and V. Ozolins, Nat. Mater., 2005, vol. 4, pp. 309-316.

    Article  Google Scholar 

  44. A. J. Ardell, Interface Sci., 1995, vol. 3, pp. 119-125.

    Article  Google Scholar 

  45. C. Li, S. He, Y. Fan, H. Engelhardt, S. Jia, W. Xuan, X. Li, Y. Zhong, Z. Ren, Appl. Phys. Lett., 2017, vol. 110, pp. 074102.

    Article  Google Scholar 

  46. C. Li, S. He, H. Engelhardt, T. Zhan, W. Xuan, X. Li, Y. Zhong, Z. Ren and M. Rettenmayr, Sci. Rep. 2017, vol. 7, pp. 18085.

    Article  Google Scholar 

  47. M. Karunaratne, D.C. Cox, P.Carter and R.C. Reed, Superalloys 2000, 2000, pp. 263-272.

    Google Scholar 

  48. J. Tiley, G.B. Viswanathan, R. Srinivasan, R. Banerjee, D.M. Dimiduk and H.L. Fraser, Acta Mater., 2009, vol. 57, pp. 2538-2549.

    Article  Google Scholar 

  49. J. Lapin, M. Gebura, O. Bajana, T. Pelachová and M. Nazmy, Kovove Mater., 2009, vol. 47, pp. 129-138.

    Google Scholar 

  50. A.J. Ardell, Metall. Mater. Trans. B, 1970, vol. 1, pp. 525-534.

    Article  Google Scholar 

  51. T. Miyazaki, H. Imamura, H. Mori and T. Kozakal, J. Mater. Sci., 1981, vol. 16, pp. 1197-1203.

    Article  Google Scholar 

  52. R.A. Ricks, A.J. Porter and R.C. Ecob, Acta Metall., 1983, vol. 31, pp. 43-53.

    Article  Google Scholar 

  53. M.F. Henry, Y.S. Yoo, D.Y. Yoon and J. Choi, Metall. Trans. A, 1993, vol. 24, pp. 1733-1743.

    Article  Google Scholar 

  54. Mats Hillert: Phase equilibria, phase diagrams and phase transformations: their thermodynamic basis, Cambridge University Press, Cambridge, 2007.

    Book  Google Scholar 

  55. J.H. Westbrook, Z. Kristallogr., 1958, vol. 110, pp. 21.

    Article  Google Scholar 

  56. T. Miyazaki, H. Imamura and T. Kozakai, Mater. Sci. Eng., 1982, vol. 54, pp. 9-15.

    Article  Google Scholar 

  57. A. Hazotte, T. Grosdidier and S. Denis, Scripta Mater. 1996, vol. 34, pp. 601-608.

    Article  Google Scholar 

  58. M. Feller-Kniepmeier, T. Link, I. Poschmann, G. Scheunemann-Frerker and C. Schulze, Acta Mater., 1996, vol. 44, pp. 2397-2407.

    Article  Google Scholar 

  59. C.T. Sims, N.S. Stoloff, W.C. Hagel: Superalloys II, John Wiley & Sons, New York, 1987.

    Google Scholar 

  60. E. Fleischmann, M.K. Miller, E. Affeldt and U. Glatzel, Acta Mater. 2015, vol. 87, pp. 350-356.

    Article  Google Scholar 

  61. A.J. Ardell, Metall. Trans. A, 1985, vol. 16, pp. 2131-2165.

    Article  Google Scholar 

  62. R. C. Reed: The Superalloys Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  63. B. Reppich, Acta Metall. 1982, vol. 30, pp. 87-94.

    Article  Google Scholar 

  64. R. O. Scattergood and D.J. Bacon, Philos. Mag., 1975, vol. 31, pp. 179-198.

    Article  Google Scholar 

  65. P. Beauchamp, J. Douin and P.Veyssiere, Philos. Mag. A, 1987, vol. 55, pp. 565-581.

    Article  Google Scholar 

  66. S.M. Copley and B.H. Kear, Trans. TMS-AIME 1967, vol. 239, pp. 984-992.

    Google Scholar 

  67. H. O’Neill: Hardness measurement of metals and alloys, Chapman & Hall, London, 1967.

    Google Scholar 

  68. W. W. Milligan and S. D. Antolovich, Metall. Trans. A 1987, vol. 18, pp. 85-95.

    Article  Google Scholar 

  69. A. Sengupta, S. K. Putatunda, L. Bartosiewicz, J. Hangas, P. J. Nailos, M. Peputapeck and F. E. Alberts, J. Mater. Eng. Perform. 1994, vol. 3, pp. 73-81.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (C. Li) is very grateful for support from the Alexander von Humboldt Foundation. This work was also supported by Shanghai Pujiang Talents Program (18PJ1403700), the Natural Science Foundation of China (Grant Numbers 51401116, 51690162, and U1560202), and the United Innovation Program of Shanghai Commercial Aircraft Engine (Grant Nos. AR910, AR911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanjun Li or Zhongming Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 4, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Seyring, M., Li, X. et al. Effect of Heat Treatment Combined with an Alternating Magnetic Field on Microstructure and Mechanical Properties of a Ni-Based Superalloy. Metall Mater Trans A 50, 1837–1850 (2019). https://doi.org/10.1007/s11661-019-05141-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05141-z

Navigation