Skip to main content
Log in

Effects of Homogenization Treatment on the Microsegregation of a Ni–Co Based Superalloy Produced by Directional Solidification

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

A Correction to this article was published on 19 July 2021

This article has been updated

Abstract

To reduce microsegregation, a series of homogenization treatments were carried out on a Ni–Co based superalloy prepared through directional solidification (DS). The element segregation characteristics and microstructural evolution were investigated by optical microscopy (OM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). The results show that the elements are non-uniformly distributed in the solidified superalloy, in which W and Ti have the greatest tendency of microsegregation. Furthermore, severe microsegregation leads to complicated precipitations, including η-Ni3Ti and eutectic (γ + γ′). EPMA results show that Al and Mo are uniformly distributed between the eutectic (γ + γ′) and γ matrix, whereas Ti is segregated in the eutectic (γ + γ′) and η phases. The positive segregation element Ti, which is continuously rejected into the remaining liquid during γ matrix solidification, promotes the formation of eutectic (γ + γ′) and the transformation of the η phase. According to the homogenization effect, the optimal single-stage homogenization process of this alloy is 1180 °C for 2 h because of the sufficient diffusion segregation of the elements. In the present study, a kinetic diffusion model was built to reflect the degree of element segregation during homogenization, and the diffusion coefficients of W and Ti were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from the interdendritic region

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

References

  1. Y. Yuan, Y.F. Gu, T. Osada, Z.H. Zhong, T. Yokokawa, H. Harada, Scr. Mater. 66, 884 (2012)

    Article  CAS  Google Scholar 

  2. R.C. Reed, The Superalloys: Fundaments and Applications (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  3. R. Zhang, C. Tian, C. Cui, Y. Zhou, X. Sun, J. Alloys Compd. 818, 152863 (2020)

    Article  CAS  Google Scholar 

  4. F.J. Liu, M.C. Zhang, J.X. Dong, Y.W. Zhang, Acta Metall. Sin. Engl. Lett. 20, 102 (2007)

    Article  CAS  Google Scholar 

  5. L. Xu, Z. Chu, C. Cui, Y. Gu, X. Sun, Acta Metall. Sin. 49, 863 (2013). (in Chinese)

    Article  CAS  Google Scholar 

  6. Y. Gu, C. Cui, Y. Yuan, Z. Zhong, Acta Metall. Sin. 51, 1191 (2015). (in Chinese)

    CAS  Google Scholar 

  7. X. Li, C. Jia, Y. Zhang, S. Lv, Z. Jiang, Vacuum. 177, 109379 (2020). https://doi.org/10.1016/j.vacuum.2020.109379

    Article  CAS  Google Scholar 

  8. W.B. Han, K.F. Zhang, B. Wang, D.Z. Wu, Acta Metall. Sin. Engl. Lett. 20, 307 (2007)

    Article  CAS  Google Scholar 

  9. P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou, X. Sun, J. Alloys Compd. 831, 154618 (2020)

    Article  CAS  Google Scholar 

  10. Y.F. Gu, T. Fukuda, C. Cui, H. Harada, A. Mitsuhashi, T. Yokokawa, J. Fujioka, Y. Koizumi, T. Kobayashi, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 3047 (2009)

    Article  Google Scholar 

  11. Z. Zhong, Y. Gu, Y. Yuan, C. Cui, T. Yokokawa, H. Harada, Mater. Sci. Eng. A 552, 464 (2012)

    Article  CAS  Google Scholar 

  12. C.Y. Cui, Y.F. Gu, D.H. Ping, H. Harada, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 282 (2009)

    Article  Google Scholar 

  13. Y. Yuan, Y. Gu, C. Cui, T. Osada, T. Yokokawa, H. Harada, Adv. Eng. Mater. 13, 296 (2011)

    Article  CAS  Google Scholar 

  14. M.J. Sohrabi, H. Mirzadeh, Vacuum 169, 108875 (2019)

    Article  CAS  Google Scholar 

  15. M.J. Sohrabi, H. Mirzadeh, M. Rafiei, Vacuum 154, 235 (2018)

    Article  CAS  Google Scholar 

  16. B. Gao, L. Wang, T. Liang, Y. Liu, X. Song, J. Qu, Acta Metall. Sin. 52, 437 (2016) .(in Chinese)

    CAS  Google Scholar 

  17. F.J. Yin, R. Fu, F.L. Li, P. Di, G. Du, D. Feng, J. Iron Steel Res. 30, 32 (2018)

    Google Scholar 

  18. Z.N. Bi, J. Tron Steel Res. 23, 267 (2011)

    Google Scholar 

  19. J. Dong, L. Li, H. Li, M. Zhang, Z. Yao, Acta Metall. Sin. 51, 1207 (2015). (in Chinese)

    CAS  Google Scholar 

  20. X. You, Y. Tan, Q. You, S. Shi, J. Li, F. Ye, X. Wei, J. Alloys Compd. 676, 202 (2016)

    Article  CAS  Google Scholar 

  21. R. Fu, F. Li, F. Yin, D. Feng, Z. Tian, L. Chang, Mater. Sci. Eng. A 638, 152 (2015)

    Article  CAS  Google Scholar 

  22. X. Zhuang, Y. Tan, L. Zhao, X. You, P. Li, C. Cui, J. Mater. Res. Technol. 9, 5422 (2020)

    Article  CAS  Google Scholar 

  23. L. Chang, H. Jin, W. Sun, J. Alloys Compd. 653, 266 (2015)

    Article  CAS  Google Scholar 

  24. B. Ma, S.Y. Ren, X.H. Jiang, Phys. Exam. Test. 4, 8–9 (1994). https://doi.org/10.13228/j.boyuan.issn1001-0777.1994.04.002. (in Chinese) (马宾, 任舜禹, 江显泓. 镍基高温合金中η相研究, 物理测试, 1994; 4)

  25. H. Li, X. Dong, L. Li, Trans. Mater. Heat Treat. 38, 61 (2017)

    Google Scholar 

  26. M.C. Flemings, New York 75, 219 (1974)

    Google Scholar 

  27. P.G. Shewmon. Diffusion in Solids, Chap. (New York, 1963). https://doi.org/10.1007/978-3-319-48206-4.

  28. M. Hillert, Diffus. Thermodyn. Alloy (1984). http://ir.ustb.edu.cn/handle/400002224/10319.

  29. K. Peng, Y.T. Yang, H.K. Zhang, M. Jin, G.J. Shao, Trans. Mater. Heat Treat. 31, 87 (2010)

    CAS  Google Scholar 

  30. A. Paul, M.J.H. Van Dal, A.A. Kodentsov, F.J.J. Van Loo, Acta Mater. 52, 623 (2004)

    Article  CAS  Google Scholar 

  31. G.D. Zhao, L.X. Yu, F. Qi, F. Liu, W.R. Sun, Z.Q. Hu, Acta Metall. Sin. Engl. Lett. 29, 518 (2016)

    CAS  Google Scholar 

  32. Y. Wang, Dissertation (Shanghai University, Shanghai, 2018). (in Chinese)

    Google Scholar 

  33. C. Haragather, S. Shang, Z. Liu, Acta Mater. 157, 126–141 (2018)

    Article  Google Scholar 

  34. F. Liu, Z.X. Wang, Z. Wang, J. Zhong, X.K. Wu, Z.J. Qin, Z.H. Li, L.M. Tan, L. Zhao, L.L. Zhu, L. Jiang, L. Huang, L.J. Zhang, Y. Liu, Mater Today Commun. 24, 101018 (2020)

    Article  CAS  Google Scholar 

  35. J. Wang, Y. Wang, N. Zhu, X.G. Lu, J. Phase Equilib. Diffus. 38, 37 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Nos. 2019YFA0705304 and 2017YFA0700703), the National Natural Science Foundation of China (No. 51671189), Innovation Program of Institute of Metal Research, China Academy of Science (No.2021-PY09), and the Doctoral Scientific Research Foundation of Liaoning Province (No. 2020-BS-007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Zhang or Chuanyong Cui.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, R., Cui, C. et al. Effects of Homogenization Treatment on the Microsegregation of a Ni–Co Based Superalloy Produced by Directional Solidification. Acta Metall. Sin. (Engl. Lett.) 34, 943–954 (2021). https://doi.org/10.1007/s40195-021-01192-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01192-7

Keywords

Navigation