Skip to main content
Log in

Microstructural and Hardness Evaluations of a Centrifuged Sn-22Pb Casting Alloy Compared with a Lead-Free SnAg Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A great preoccupation with replacing the traditional Sn-Pb alloy with a Pb-free alloy (“green alloy”) is recognized. There are industrial sectors that demand metallurgical improvements to attain certain unsoundness and adequate properties as a function of imposed operational parameters. In this experimental investigation, two distinctive centrifuged casting alloys (i.e., Sn-2 wt pct Ag and Sn-22 wt pct Pb) are compared. It is found that centrifuged castings have similar microstructure constituents, although distinctive cooling rates and solute contents are considered. It is also found that Ag3Sn intermetallic particles are responsible for attaining similar tensile strength, since more dislocations between Ag3Sn particles and the Sn-rich phase are provided. In order to replace the Sn-Pb alloys with a successor alloy containing sustainability and environmental aspects associated with castability and to guarantee the desired properties, it seems that a green alloy (Pb free) with intermetallic particles finely and homogeneously distributed provides an interesting benefit to various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.P. Yu, H.J. Lin, and M.H. Hon: Mater. Electron., 2000, vol. 11, pp. 461–71.

    Article  Google Scholar 

  2. K. Suganuma: Solid State Mater. Sci., 2001, vol. 5, pp. 55–64.

    Article  Google Scholar 

  3. C. Wei, Y.C. Liu, Y.J. Han, J.B. Wan, and K. Yang: J. Alloys Compd., 2008, vol. 464, pp. 301–05.

    Article  Google Scholar 

  4. ALJ—Associação Limeirense de Joias, Limeira, Brazil, http://www.alj.org.br. Accessed Sept. 2015.

  5. P. Donelan: Mater. Sci. Technol., 2000, vol. 16, pp. 261–69.

    Article  Google Scholar 

  6. J. An, Y.B. Liu, Y. Lu, J. Wang, and B. Ma: J. Mater. Eng. Performance, 2002, vol. 11, pp. 433–43.

    Article  Google Scholar 

  7. C. Leinenbach, R. Transchel, K. Gorgievski, F. Kuster, H.R. Elsener, and K. Wegener: J. Mater. Eng. Performance, 2015, vol. 24, pp. 2042–50.

    Article  Google Scholar 

  8. H. Liao, Y. Wu, and Y. Wang: J. Mater. Eng. Performance, 2015, vol. 24, pp. 2503–10.

    Article  Google Scholar 

  9. S.N. Alam, M.K. Mishra, M. Padhy, A.N.S.S. Swain, P. Mishra, and A. Saha: Trans. Ind. Inst. Met., 2015, vol. 68, pp. 881–96.

    Article  Google Scholar 

  10. X. Wang, Y. Xiu, M.J. Dong, and Y.C. Liu: J. Mater. Sci.: Mater. Electron., 2011, vol. 22, pp. 592–95.

    Google Scholar 

  11. P. Šebo, P.S. Sr., D. Janičkovič, E. Illeková, M. Zemánková, Y. Plevachuk, V. Sidorov, and P. Švec: Mater. Sci. Eng., 2013, vol. 571A, pp. 184–92.

    Google Scholar 

  12. M.J. Dong, Z.M. Gao, Y.C. Liu, X. Wang, and L.M. Yu: Int. J. Min. Metall. Mater., 2012, vol. 19, pp.1029–35.

    Article  Google Scholar 

  13. S.K. Kang: in Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, K.J. Puttlitz and K.A. Stalter, ‪eds., CRC Press, Boca Raton‬, B2004‬, ch. 9

    Google Scholar 

  14. C.M. Miller, I.E. Anderson, and J.F. Smith: J. Electron. Mater., 1994, vol. 23, pp. 595–601

    Article  Google Scholar 

  15. H. Wang, Z. Gao, Y. Liu, C. Li, Z. Ma, and L. Yu: J. Mater. Sci.: Mater. Electron., 2015, vol. 26, pp. 11–22

    Google Scholar 

  16. L.M. Lee and A.A. Mohamad: Advances in Materials Science and Engineering (2013), http://dx.doi.org/10.1155/2013/123697

    Google Scholar 

  17. T.L. Su, L.C. Tsao, S.Y. Chang, and T.H. Chuang: J. Mater. Eng. Performance, 2002, vol. 11, pp. 365–68.

    Article  Google Scholar 

  18. W.R. Osório, D.R. Leiva, L.C. Peixoto, L.R. Garcia, and A. Garcia: J. Alloys Compds., 2013, vol. 562, pp. 194–204.

    Article  Google Scholar 

  19. L.M. Satizabal, E. Poloni, A.D. Bortolozo, and W.R. Osório: Corrosion (Houston), 2016, vol. 72, pp. 1064–80.

    Article  Google Scholar 

  20. A.A. El-Daly, A.E. Hammad, A. Fawzy, and D.A. Nasrallh: Mater. Design, 2013, vol. 43, pp. 40–49.

    Article  Google Scholar 

  21. X. Chen, J. Zhou, F. Xue, J. Bai, and Y. Yao: J. Electron. Mater., 2015, vol. 44, pp. 725–32.

    Article  Google Scholar 

  22. C.H. Cáceres and Q.G. Wang: Int. J. Cast Met. Res., 1996, vol. 9, pp. 157–62.

    Article  Google Scholar 

  23. C.H. Cáceres, C.J. Davidson, and J.R. Griffiths: Mater. Sci. Eng., 1995, vol. 197A, pp. 171–79.

    Article  Google Scholar 

  24. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., ASM INTERNATIONAL, Materials Park, OH, 1990, p. 3542.

    Google Scholar 

  25. W. Kurz and D.J. Fisher: Fundamentals of Solidification, Trans Tech Publications, Zurich, Switzerland, 1992.

    Google Scholar 

  26. J. Bath: Lead-Free Soldering. ‪Springer‬, New York, NY, 2007‬.

    Book  Google Scholar 

  27. C.A. Handwerker, F.W. Gayle, E. de Kluizenar, and K. Suganuma: major international lead (pb)-free solder studies. In Handbook of Lead-free Solder Technology for Mocroelectronics Assemblies, K.J. Puttlitz K.A. Stalter, and M. Dekker, eds., 2004.

  28. Metals Handbook, 9th ed., vol. 9, Metallography and Microstructures, ASM, Materials Park, OH, 2004.

  29. Metals Handbook, 2nd ed., vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 1992, p. 3153.

  30. J. McKeown and O. Hudson: J. Inst. Met., 1937, vol. 60, pp. 109–30.

    Google Scholar 

  31. G.V. Samsonov: in Handbook of the Physicochemical Properties of the Elements, 1968, pp. 387–446

    Book  Google Scholar 

  32. P. Chen, X.C. Zhao, Y. Liu, H. Li, and Y. Wang: Rare Metals (in press).

  33. L. Su and L. Zhang: Adv. Mater. Sci. Eng., 2015.

  34. K. Maslinda, A.S. Anasyida, and M.S. Nurulakmal: J. Mater. Sci: Mater Electr. (in press).

  35. L. Kong, B. Yang, B. Xu, and Y. Li: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4405–10.

    Article  Google Scholar 

  36. A. Sharma, H.R. Sohn, and J.P. Jung: Metall. Mater. Trans. A, 2017, vol. 48A.

Download references

Acknowledgments

The authors acknowledge the financial support provided by FAEPEX-UNICAMP and CNPq (The Brazilian Research Council, Grant No. 446797/2014-6). The authors also recognize the contributions provided by Mr. Luiz Antonio Garcia in metalography and tensile testings procedures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wislei Riuper Osório.

Additional information

Manuscript submitted December 13, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satizabal, L.M., Costa, D., Hainick, G.O. et al. Microstructural and Hardness Evaluations of a Centrifuged Sn-22Pb Casting Alloy Compared with a Lead-Free SnAg Alloy. Metall Mater Trans A 48, 1880–1892 (2017). https://doi.org/10.1007/s11661-016-3945-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3945-1

Keywords

Navigation