Skip to main content
Log in

Effects of Alloy Composition on Microstructure and Mechanical Properties of Iron-Based Materials Fabricated by Ball Milling and Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Three PM steels, Fe-0.8C, Fe-2Cu-1.5Ni-0.5Mo-0.8C, and Fe-2Cu-2Ni-1Mo-1C, were fabricated by mechanical milling and spark plasma sintering. Dense sintered samples with fine and homogeneous microstructure were obtained. According to the results of X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy, it is suggested that the temperature of the sample can be ~50 K (50 °C) greater than that recorded. The microstructures of the as-sintered samples are divided into two groups. One consists of both ferritic and martensitic structures, and the others are of a ferritic structure. A considerable amount of martensite exists only in those high alloy Fe-2Cu-2Ni-1Mo-1C samples. The hardness of the sintered samples mainly depends on microstructure and composition. It shows that the hardness enhances with the volume fraction of martensite. However, a lower compressive strength is observed in the samples with higher volume fraction of martensite. The analysis of the deformation behavior demonstrates that the yield strength and ultimate strength are solely correlated to the properties of ferritic structure. Discontinuously yielding phenomenon, initial work hardening exponent, and decreasing rate of strain hardening exponent with strain are considered to be sensitive to the morphology of carbides formed in the ferritic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. F. Chagnon and L. Tremblay: Proceedings of Powder Metallurgy World Congress PM2004, Vienna, Austria, 17–21 October, 2004, vol. 3, pp. 205–10.

  2. J.M. Torralba and M. Campos: Powder Metall. Prog., 2002, vol. 2, pp. 177–87.

    Google Scholar 

  3. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  Google Scholar 

  4. W.B. James: Met. Powder Rep., 1991, vol. 46, pp. 26–32.

    Article  Google Scholar 

  5. Z. Livne, A. Munitz, J.C. Rawers, and R.J. Fields: Nanostruct. Mater., 1998, vol. 10, pp. 503–22.

    Article  Google Scholar 

  6. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763–777.

    Article  Google Scholar 

  7. Y.Y. Li, Y. Long, X.Q. Li, and T.W.L. Ngai: Key Eng. Mater., 2007, vol. 353–358, pp. 2143–46.

    Article  Google Scholar 

  8. Y.Y. Li, X.Q. Li, Y. Long, M. Shao, and W. Xia: Key Eng. Mater., 2006, vol. 315–316, pp. 445–49.

    Article  Google Scholar 

  9. F. Hanejko, A. Taylor, A. Rawlings, and I.N. Salem: Proceedings of the World Congress on Powder Metallurgy and Particulate Materials, Orlando, USA, 16–21 June, 2002, vol. 13, pp. 35–47.

  10. J.H. Hollomon and L.D. Jaffe: Trans. AIME, 1945, vol. 162, pp. 223–49.

    Google Scholar 

  11. C.C. Koch: Nanostruct. Mater., 1997, vol. 9, pp. 13–22.

    Article  Google Scholar 

  12. X.J. Hao, Z.G. Liu, K. Masuyama, T. Rikimaru, M. Umemoto, K. Tsuchiya, and S.M. Hao: Mater. Sci. Technol. Lond., 2001, vol. 17, pp. 1347–52.

    Article  Google Scholar 

  13. H. Danninger, C. Gierl, S. Kremel, G. Leitner, K. Jaenicke-Roessler, and Y. Yu: Powder Metall. Prog., 2002, vol. 2, pp. 125–40.

    Google Scholar 

  14. Y. Xu, Z.G. Liu, M. Umemoto, and K. Tsuchiya: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2195–2203.

    Article  Google Scholar 

  15. S. Ohsaki, K. Hono, H. Hidaka, and S. Takaki: Scripta Mater., 2005, vol. 52, pp. 271–76.

    Article  Google Scholar 

  16. E.M. Taleff, C.K. Syn, D.R. Lesuer, and O.D. Sherby: Metall. Mater. Trans. A, 1996, vol. 27, pp. 111–18.

    Article  Google Scholar 

  17. Y. Liu, T. He, G. Peng, and F. Lian: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2144–52.

    Article  Google Scholar 

  18. A. Fernández Vicente, M. Carsí, F. Peñalba, and O.A. Ruano: Fatigue Fract. Eng. Mater. Struct., 2006, vol. 29, pp. 817–28.

    Article  Google Scholar 

  19. S.A. Khodir, Y. Morisada, R. Ueji, and H. Fujii: Mater. Sci. Eng. A, 2012, vol. 558, pp. 572–78.

    Article  Google Scholar 

  20. M. Nygren and Z. Shen: Key Eng. Mater., 2004, vol. 264, pp. 719–24.

    Article  Google Scholar 

  21. H. Dong, X. Sun, W. Hui, S. Zhang, J. Shi, and M. Wang: ISIJ Int., 2008, vol. 48, pp. 1126–32.

    Article  Google Scholar 

  22. Y. Adachi, T. Tomida, and S. Hinotani: Tetsu-to-Hagane, 1999, vol. 85, pp. 620–27.

    Google Scholar 

  23. F.L. Lian, H.J. Liu, J.J. Sun, X.J. Sun, S.W. Guo, Y.N. Liu, and L.X. Du: Mater. Res., 2013, vol. 28, pp. 757–65.

    Article  Google Scholar 

  24. T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito, and T. Maki: ISIJ Int., 2008, vol. 48, pp. 1038–45.

    Article  Google Scholar 

  25. A. Garcia-Junceda, C. Capdevila, F.G. Caballero, and C. Garcia de Andres: Scripta Mater., 2008, vol. 58, pp. 134–37.

    Article  Google Scholar 

  26. H.S. Yang, H.K.D.H. Bhadeshia: Scripta Mater., 2009, vol. 60, pp. 493–95.

    Article  Google Scholar 

  27. I. Lonardelli, M. Bortolotti, W. van Beek, L. Girardini, M. Zadra, and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 2012, vol. 555, pp. 139–47.

    Google Scholar 

  28. Y.G. Gurevich, V.I. Rakhmanov, and Y.I. Pozhidaev: Powder Metall. Met. Ceram., 1979, vol. 18, pp. 407–10.

    Article  Google Scholar 

  29. F.J. Semel and D.A. Lados: Powder Metall., 2009, vol. 52, pp. 282–90.

    Article  Google Scholar 

  30. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 4th ed., Wiley, New York, 1996, p. 134.

    Google Scholar 

  31. H.K.D.H. Bhadeshia and R.W.R.W. Honeycombe: Steels: Microstructure And Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006, pp. 26–34.

    Google Scholar 

  32. R. Abbaschian, L. Abbaschian, and R. Reed-Hill: Physical Metallurgy Principles, 4th ed., Cengage Learning, Stamford, 2006, pp. 275–76.

    Google Scholar 

  33. E.O. Hall: Yield Point Phenomenon in Metals and Alloys, Macmillan, London, 1970, pp. 64–126.

    Book  Google Scholar 

  34. J.C. Rawers: J. Mater. Sci., 1999, vol. 34, pp. 941–44.

    Article  Google Scholar 

  35. K. Oh-Ishi, H.W. Zhang, T. Ohkubo, and K. Hono: Mater. Sci. Eng. A, 2007, vol. 456, pp. 20–27.

    Article  Google Scholar 

  36. Z.Q. Lv, B. Wang, Z.H. Wang, S.H. Sun, and W.T. Fu: Mater. Sci. Eng. A, 2013, vol. 574, pp. 143–48.

    Article  Google Scholar 

  37. Y. Xiong, T. He, Z. Guo, H. He, F. Ren, and A.A. Volinsky: Mater. Sci. Eng. A, 2013, vol. 563, pp. 163–67.

    Article  Google Scholar 

  38. S.L. Semiatin: ASM Handbook vol. 14A, Metalworking: Bulk Forming, ASM International, Materials Park, OH, 2005, p. 210.

  39. R.E. Reed-Hill, W.R. Cribb, and S.N. Monteiro: Metall. Trans., 1973, vol. 4, pp. 2665–67.

    Article  Google Scholar 

  40. P.B. Jaoul: J. Mech. Phys. Solids, 1957, vol. 5, pp. 95–102.

    Article  Google Scholar 

  41. C. Crussard: Rev. Metall, 1953, vol. 50, pp. 697–710.

    Google Scholar 

  42. A. Bag, K.K. Ray, and E.S. Dwarakadasa: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1193–1202.

    Article  Google Scholar 

  43. Z.H. Cai, H. Ding, X. Xue, J. Jiang, Q.B. Xin, and R. Misr: Scripta Mater., 2013, vol. 68, pp. 865–68.

    Article  Google Scholar 

  44. M. Umemoto, K. Tsuchiya, Z.G. Liu, and S. Sugimoto: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1785–94.

    Article  Google Scholar 

  45. A. Kumar, S.B. Singh, and K.K. Ray: Mater. Sci. Eng. A, 2008, vol. 474, pp. 270–82.

    Article  Google Scholar 

  46. Z. Jiang, Z. Guan, and J. Lian: J. Mater. Sci., 1993, vol. 28, pp. 1814–18.

    Article  Google Scholar 

  47. A.M. Garde, E. Aigeltinger, and R.E. Reed-Hill: Metall. Trans., 1973, vol. 4, pp. 2461–68.

    Article  Google Scholar 

  48. B. Karlsson and G. Linden: Mater. Sci. Eng., 1975, vol. 17, pp. 153–64.

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (Y. Q. Ye) would like to thank Dr. Qiaoyun Huang for her help in improving the manuscript. This work was financially supported by the National Nature Science Foundation (Grant No. 51174095), the Program for New Century Excellent Talents in University (Grant No. NCET-10-0364), and the Fundamental Research Funds for the Central Universities (Grant No. 2012ZG0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Li.

Additional information

Manuscript submitted May 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Li, X., Hu, K. et al. Effects of Alloy Composition on Microstructure and Mechanical Properties of Iron-Based Materials Fabricated by Ball Milling and Spark Plasma Sintering. Metall Mater Trans A 46, 476–487 (2015). https://doi.org/10.1007/s11661-014-2597-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2597-2

Keywords

Navigation