Skip to main content
Log in

Local and Global Stress–Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Transformation-induced plasticity (TRIP) steels have excellent strain hardening exponents and resistibility against tensile necking using the strain-induced martensite formation that occurs as a result of the plastic deformation and strain on the retained austenite phase. Detailed studies on the microstructures and local mechanical properties, as well as global mechanical properties, are necessary in order to thoroughly understand the properties of TRIP steels with multiple phases of ferrite, bainite, retained austenite, and martensite. However, methods for investigating the local properties of the various phases of the TRIP steel are limited due to the very complicated and fine microstructures present in TRIP steel. In this study, the experimental and numerical methods, i.e., the experimental nanoindenting results and the theoretical finite element analyses, were combined in order to extract the local stress–strain curves of each phase. The local stress–strain curves were in good agreement with the values presented in the literature. In particular, the global plastic stress–strain behavior of the TRIP steel was predicted using the multiple phase unit cell finite element analysis, and this demonstrated the validity of the obtained properties of each local phase. The method of extracting the local stress–strain curves from the nanoindenting curves and predicting the global stress–strain behavior assists in clarifying the smart design of multi-phase steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765-78.

    Article  Google Scholar 

  2. G. Reisner, E.A. Werner, and F.D. Fischer: Int. J. Solids Struct., 1998, vol. 35, pp. 2457-73.

    Article  Google Scholar 

  3. E. De Moor, D.K. Matlock, J.G. Speera, and M.J. Merwin: Scripta Mater., 2011, vol. 64, pp. 185-88.

    Article  Google Scholar 

  4. R.L. Miller: Metall. Trans. A, 1972, vol. 3, pp. 905-12.

    Article  Google Scholar 

  5. J.I. Kim and J.W. Morris: Metall. Trans. A, 1981, vol. 12, pp. 1957-63.

    Article  Google Scholar 

  6. M. De Meyer, D. Vanderschueren, and B.C. De Cooman: ISIJ Inter., 1999, vol. 39, pp. 813-22.

    Article  Google Scholar 

  7. W.C. Jeong, D.K. Matlock, and G. Krauss: Mater. Sci. Eng. A, 1993, vol. 165, pp. 1-8.

    Article  Google Scholar 

  8. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564-80.

    Article  Google Scholar 

  9. H. Bei, Z.P. Lu, S. Shim, G. Chen, and E.P. George: Metall. Mater. Trans. A, 2010, vol. 58, pp. 1735-42.

    Article  Google Scholar 

  10. C. Mitterer, P.H. Mayrhofer, M. Beschliesser, P. Losbichler, P. Warbichler, F. Hofer, P.N.Gibson, W. Gissler, H. Hruby, J. Musil, and J. Vlček: Surf. Coat. Technol., 1999, vol. 120-121, pp. 405-11.

    Article  Google Scholar 

  11. K. Durst, B. Backes, and M. Göken: Scripta Mater., 2005, vol. 52, pp. 1093-97.

    Article  Google Scholar 

  12. M. Göken and M. Kempf: Acta Mater., 1999, vol. 47, pp. 1043-52.

    Article  Google Scholar 

  13. J.-Y. Rho, T.Y. Tsui, and G.M. Pharr: Biomaterials, 1997, vol. 18, pp. 1325-30.

    Article  Google Scholar 

  14. S. Bec, A. Tonck, and J.L. Loubet: Philos. Mag., 2006, vol. 86, pp. 5347-58.

    Article  Google Scholar 

  15. A.C. Fischer-Cripps: Mater. Sci. Eng. A, 2004, vol. 385, pp. 74-82.

    Article  Google Scholar 

  16. Z.B. Wang, N.R.Tao, S.Li, W. Wang, G. Liu, J. Lu, and K. Lu: Mater. Sci. Eng. A, 2003, vol. 352, pp. 144-49.

    Article  Google Scholar 

  17. O. Kraft, R. Schwaiger, and P. Wellner: Mater. Sci. Eng. A, 2001, vol. 319-321, pp. 919-23.

    Article  Google Scholar 

  18. T. Chudoba and F. Richter: Surf. Coat. Technol., 2001, vol. 148, pp 191-98.

    Article  Google Scholar 

  19. D. Tabor: The hardness of metals, Oxford: Oxford University Press, 1951, pp. 100-126.

    Google Scholar 

  20. Y. Ma, Y. Zhang, H-F. Yu, X-Y. Zhang, X-F. Shu, and B. Tang: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2368-2373.

    Article  Google Scholar 

  21. J-C. Kuo and I-H. Huang, Mater. Trans., 2010, vol. 51, pp. 2104-2108.

    Article  Google Scholar 

  22. S. Pathak, S.R. Kalidindi, C. Klemenz, and N. Orlovskaya, J. Euro. Ceram. Soc., 2008, vol. 28, pp. 2213-2220.

    Article  Google Scholar 

  23. K.D. Bouzakis, N. Michailidis, and G. Erkens: Surf. Coat. Technol., 2001, vol. 142-144, pp. 102-09.

    Article  Google Scholar 

  24. ABAQUS/Standard, ABAQUS, Inc., Providence, RI, 2009.

  25. W.C. Oliver and G.M. Pharr: J. Mater. Res., 2004, vol. 19, pp. 3-20.

    Article  Google Scholar 

  26. Y.-T. Cheng and C.-M. Cheng: Appl. Phys. Lett., 1998, vol. 73, pp. 614-16.

    Article  Google Scholar 

  27. Y.-T. Cheng and C.-M. Cheng: J. Appl. Phys., 1998, vol. 84, pp. 1284-91.

    Article  Google Scholar 

  28. Y. Wang, D. Raabe, C. Kluber, and F. Roters: Acta Mater., 2004, vol. 52, 2229-2238.

    Article  Google Scholar 

  29. H.S. Kim: Mater. Sci. Eng. A, 2000, vol. 289, pp. 30-33.

    Article  Google Scholar 

  30. H.S. Kim, S.I. Hong, and S.J Kim: J. Mater. Proc. Technol., 2001, vol. 112, pp. 109–13.

  31. Y.-L. Shen, M. Finot, A. Needleman, and S. Suresh: Acta Metall. Mater., 1994, vol. 42, pp. 77-97.

    Article  Google Scholar 

  32. J. Segurado, C. González, and J. LLorca: Acta Mater., 2003, vol. 51, pp. 2355–69.

  33. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner: Phys. Rev. B, 2003, vol. 67, pp. 1721011-14.

    Article  Google Scholar 

  34. T.-H. Ahn, C.-S. Oh, D.H. Kim, K.H. Oh, H. Bei, E.P. George, and H.N. Han: Scripta Mater., 2010, vol. 63, pp. 540-43.

    Article  Google Scholar 

  35. R.G. Davies: Metall. Trans. A, 1978, vol. 9, pp. 451-55.

    Article  Google Scholar 

  36. M.-C. Zhao, F. Yin, T. Hanamura, K. Nagai, and A. Atrens: Scripta Mater., 2007, vol. 57, pp. 857-60.

    Article  Google Scholar 

  37. W.J. Dan, S.H. Li, W.G. Zhang, and Z.Q. Lin: Mater. Des., 2008, vol. 29, pp. 604-12.

    Article  Google Scholar 

  38. M.R. Akbarpour and A. Ekrami: Mater. Sci. Eng. A, 2008, vol. 477, pp. 306-10.

    Article  Google Scholar 

  39. H.-G. Lambers, S. Tschumak, H.J. Maier, and D. Canadinc: Int. J. Struct. Change. Solids., 2011, vol. 3, pp. 15-27.

    Google Scholar 

  40. A. Kumar, S.B. Singh, and K.K. Ray: Mater. Sci. Eng. A, 2008, vol. 474, pp. 270-82.

    Article  Google Scholar 

  41. Y. Ustinovshikov, A. Ruts, O. Bannykh, V. Blinov, and M. Kostina: Mater. Sci. Eng. A, 1999, vol. 262, pp. 82-87.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Basic Research Program of the Korea Institute of Materials Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Manuscript submitted March 9, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H.J., Lim, N.S., Lee, B.H. et al. Local and Global Stress–Strain Behaviors of Transformation-Induced Plasticity Steel Using the Combined Nanoindentation and Finite Element Analysis Method. Metall Mater Trans A 45, 6008–6015 (2014). https://doi.org/10.1007/s11661-014-2544-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2544-2

Keywords

Navigation