Skip to main content
Log in

Impact of Volume Fraction and Size of Reinforcement Particles on the Grain Size in Metal–Matrix Micro and Nanocomposites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In metal–matrix micro and nanocomposites (MMCs and MMNCs), the presence and interactions of various strengthening mechanisms are not well understood, but grain boundary strengthening is considered as one of the primary means of improving the yield strength of composites. Owing to the importance of grain size on mechanical properties, it is necessary to be able to describe how incorporation of nanoparticles (NPs) in both powder metallurgy (PM) and solidification processing (SP) affects this critical property. In the present work, we provide a basis for an empirical equation that relates particle fraction and particle size to MMNC grain size for both PM and SP synthesis methods. The model suggests that NPs retard grain coarsening in PM MMNCs and also seems to describe the effect of reinforcement concentration on grain size in SP MMCs and MMNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α :

proportionality constant required by the Zener Formula

κ :

lower limit ratio constant for the grain surface area growth rate

C :

constant

\( \overline{D} \) :

average grain diameter

\( \overline{D}_{\text{Alloy}} \) :

average grain diameter of alloy (i.e., without any added reinforcements)

D limit :

upper limit of grain diameter according the Zener Formula

d p :

diameter of inclusion/particle

f p :

reinforcement particle concentration (i.e., volume fraction)

k B :

Boltzmann’s constant

k :

rate of grain coarsening

k s :

grain surface area growth rate

\( k_{{{\text{s}}_{\text{alloy}} }} \) :

characteristic grain surface area growth rate of the alloy (i.e., without any added reinforcements)

n :

exponent

n g :

number of grains

n p :

number of reinforcement particles

\( p_{{{\text{f}}_{\text{p}} }} \) :

grain refining potential (i.e., the ability of reinforcement particles to produce small grains)

Q :

activation energy

\( \overline{R} \) :

average grain radius

\( \overline{R}_{\text{eff}} \) :

effective radius of an agglomeration of small grains

\( \overline{r}_{\text{p}} \) :

average radius of inclusion/particle

S blocked :

surface area of grain/agglomerate blocked by surrounding reinforcement particles

S contact :

surface area of grains in contact

\( S_{{{\text{contact}}_{ \hbox{max} } }} \) :

maximum surface area of grains in contact

\( \overline{S}_{\text{g}} \) :

average grain surface area

\( \overline{S}_{{{\text{g}}_{\text{alloy}} }} \) :

average grain surface area of alloy (i.e., without any added reinforcements)

\( S_{{{\text{g}}_{\text{o}} }} \) :

initial average surface area of grain (i.e., at t = 0)

S total :

total surface area of grain/agglomerate

t :

coarsening time

T :

absolute temperature

\( \overline{V}_{\text{g}} \) :

average volume of grain

\( \overline{V}_{\text{p}} \) :

average volume of reinforcement particle

References

  1. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E. Lavernia: Scripta Mater., 2003, vol. 49, pp. 297-302.

    Article  Google Scholar 

  2. B.Q. Han, Z. Lee, D. Witkin, S. Nutt, and E.J. Lavernia: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 957-65.

    Article  Google Scholar 

  3. R.G. Vogt, Z. Zhang, T.D. Topping, E.J. Lavernia, and J.M. Schoenung: J. Mater. Process. Technol., 2009, vol. 209, pp. 5046-53.

    Article  Google Scholar 

  4. J. Ye, B.Q. Han, and J.M. Schoenung: Philos. Mag. Lett., 2006, vol. 86, pp. 721-32.

    Article  Google Scholar 

  5. J. Ye, B.Q. Han, Z. Lee, B. Ahn, S.R. Nutt, and J.M. Schoenung: Scripta Mater., 2005, vol. 53, pp. 481-86.

    Article  Google Scholar 

  6. J.B. Ferguson, M. Tabandeh-Khorshid, P.K. Rohatgi, K. Cho, and C.-S. Kim: Scripta Mater., 2014, vol. 72-73, pp. 13-16.

    Article  Google Scholar 

  7. J.B. Ferguson, F. Sheykh-Jaberi, C.-S. Kim, P.K. Rohatgi, and K. Cho: Mater. Sci. Eng. A., 2012, vol. 558, pp. 193-204.

    Article  Google Scholar 

  8. C.-S. Kim, I. Sohn, M. Nezafati, J.B. Ferguson, B.F. Schultz, Z. Bajestani-Gohari, P.K. Rohatgi, and K. Cho: J. Mater. Sci., 2013, vol. 48, pp. 4191-4204.

    Article  Google Scholar 

  9. B.F. Schultz, J.B. Ferguson, and P.K. Rohatgi: Mater. Sci. Eng. A., 2011, vol. 530, pp. 87-97.

    Article  Google Scholar 

  10. D.R. Kongshaug, J.B. Ferguson, B.F. Schultz, and P.K. Rohatgi: J. Mater. Sci., 2014, vol. 49(5), pp. 2106-16.

    Article  Google Scholar 

  11. N.A. Haroun and D.W. Budworth: J. Mater. Sci., 1968, vol. 3, pp. 326-28.

    Article  Google Scholar 

  12. S. Mula, S. Padhi, S.C. Panigrahi, S.K. Pabi, and S. Ghosh: Mater. Res. Bull., 2009, vol. 44, pp. 1154-60.

    Article  Google Scholar 

  13. G. Cao, J. Kobliska, H. Konishi, and X.C. Li: Metall. Mater. Trans. A., 2008, vol. 39A, pp 880-86.

    Article  Google Scholar 

  14. S. Kamrani, R. Riedel, S.M. Seyed Reihani, and H.J. Kleebe: J. Compos. Mater., 2010, vol. 44, pp. 313-26.

    Article  Google Scholar 

  15. P.L. Zak, J. Lelito, J.S. Suchy, W.K. Krajewski, K. Haberl, and P. Schumacher: World J. Eng., 2011, vol. 8(3), pp. 269-74.

    Article  Google Scholar 

  16. X.Y. Jia, S.Y. Liu, F.P. Gao, Q.Y. Zhang, and W.Z. Li: Int. J. Cast Met. Res., 2009, vol. 22, pp. 196–99.

    Article  Google Scholar 

  17. R.E. Reed-Hill: Physical Metallurgy Principles, 3rd Ed., PWS Publishing Company, Boston, 1994, pp. 256-61.

    Google Scholar 

  18. M. De Cicco, L. Turng, X. Li, and J. Perepezko: Solid State Phenom., 2006, vol. 116-117, pp. 478-83.

    Article  Google Scholar 

  19. M. De Cicco, L. Turng, X. Li, and J. Perepezko: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 2323-30.

    Article  Google Scholar 

  20. M.O. Pekguleryuz, K.U. Kainer, and A.A. Kaya: Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing, Cambridge, 2013, pp. 169, 182–184.

  21. J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, and C.-S. Kim: Metal. Mater. Int., 2014, vol. 20 (4), in press.

Download references

Acknowledgments

This material is based upon work supported by the U.S. Army Research Laboratory under Cooperative Agreement No. W911NF-08-2-0014. The views, opinions, and conclusions made in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of Army Research Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Kim.

Additional information

Manuscript submitted January 21, 2014.

Appendix

Appendix

It is an underlying assumption of the model that metallic grains must be in contact to grow and that particles present at the grain surfaces reduce the area of contact between grains and thereby slows grain growth/coarsening. There are two relationships that likely influence the effectiveness of the particles to restrict grain growth and coarsening, i.e., the relative size of the grains and particles and the relative quantities of the grains and particles. In this Appendix, it will be shown from geometrical considerations and the assumption that grain growth rate is proportional to the grain/grain contact area that the refining potential, \( p_{{{\text{f}}_{\text{p}} }} \), is inversely proportional to particle size, provided that (1) volume fractions of reinforcement are low, (2) reinforcement particles are uniformly dispersed over the grain surfaces, and (3) there is not a large difference between reinforcement size and initial grain size.

Particle volume fraction, f p, depends on the average volume of particles, \( \overline{V}_{\text{p}} , \) and average volume of grains, \( \overline{V}_{\text{g}} \), both of which depend on the number of particles, n p , and number of grains, n g , and the radius of each, \( \overline{r}_{\text{p}} \) and \( \overline{R} \).

$$ f_{\text{p}} = \frac{{\overline{V}_{\text{p}} }}{{\overline{V}_{\text{g}} + \overline{V}_{\text{p}} }} = \frac{{n_{\text{p}} \frac{4}{3}\pi \left( {\overline{r}_{\text{p}} } \right)^{3} }}{{n_{\text{g}} \frac{4}{3}\pi \left( {\overline{R} } \right)^{3} + n_{\text{p}} \frac{4}{3}\pi \left( {\overline{r}_{\text{p}} } \right)^{3} }} = \frac{{n_{\text{p}} \left( {\overline{r}_{\text{p}} } \right)^{3} }}{{n_{\text{g}} \left( {\overline{R} } \right)^{3} + n_{\text{p}} \left( {\overline{r}_{\text{p}} } \right)^{3} }} $$
(A1)

For low volume fractions, the volume of reinforcement particles contributes minimally to the total volume and Eq. [A1] can be approximated by Eq. [A2]

$$ f_{\text{p}} = \frac{{n_{\text{p}} }}{{n_{\text{g}} }}\left( {\frac{{\overline{r}_{\text{p}} }}{{\overline{R} }}} \right)^{3} $$
(A2)

The fraction n p/n g is the number of reinforcement particles per matrix grain. Therefore,

$$ \frac{{n_{\text{p}} }}{{n_{\text{g}} }} = f_{\text{p}} \left( {\frac{{\overline{R} }}{{\overline{r}_{\text{p}} }}} \right)^{3} $$
(A3)

Because these particles are at the surface of the grain, they cover or block a certain fraction of the surface area of the grain based on the projected area of each particle.

$$ \frac{{S_{\text{blocked}} }}{{S_{\text{total}} }} \cong \frac{{\frac{{n_{\text{p}} }}{{n_{\text{g}} }}\pi \left( {\overline{r}_{\text{p}} } \right)^{2} }}{{4\pi \left( {\overline{R} } \right)^{2} }} = \frac{1}{4}\left( {\frac{{n_{\text{p}} }}{{n_{\text{g}} }}} \right)\left( {\frac{{\overline{r}_{\text{p}} }}{{\overline{R} }}} \right)^{2} = \frac{{f_{\text{p}} }}{4}\left( {\frac{{\overline{R} }}{{\overline{r}_{\text{p}} }}} \right)^{3} \left( {\frac{{\overline{r}_{\text{p}} }}{{\overline{R} }}} \right)^{2} = \frac{{f_{\text{p}} }}{4}\left( {\frac{{\overline{R} }}{{\bar{r}_{\text{p}} }}} \right) $$
(A4)

Grain growth will take place where the grains are in contact. It is expected that the maximum rate of growth, \( k_{{{\text{s}}_{\text{alloy}} }} \), will occur when the maximum contact surface area, \( S_{{{\text{contact}}_{ \hbox{max} } }} \), is available. Any blocking of the contact area will result in slower growth, such that the growth rate, k s, should be related to the unblocked or free contact surface area, S contact, such that

$$ k_{{{\text{s}}_{\text{alloy}} }} \propto S_{{{\text{contact}}_{ \hbox{max} } }} $$
(A5)
$$ k_{\text{s}} \propto S_{\text{contact}} $$
(A6)

Given the relation of Eq. [6], it follows that

$$ \frac{{f_{\text{p}} }}{\kappa } = \frac{{k_{{{\text{s}}_{\text{alloy}} }} - k_{\text{s}} }}{{k_{\text{s}} }} = \frac{{S_{{{\text{contact}}_{ \hbox{max} } }} - S_{\text{contact}} }}{{S_{\text{contact}} }} $$
(A7)

If it is further assumed that maximum surface area of grains in contact (\( S_{{{\text{contact}}_{ \hbox{max} } }} \)) is proportional to total surface area of grain (S total). Then,

$$ S_{{{\text{contact}}_{ \hbox{max} } }} \propto S_{\text{total}} $$
(A8)
$$ S_{\text{contact}} \propto \left( {S_{\text{total}} - S_{\text{blocked}} } \right) $$
(A9)
$$ \frac{{f_{\text{p}} }}{\kappa } = \frac{{S_{{{\text{contact}}_{ \hbox{max} } }} - S_{\text{contact}} }}{{S_{\text{contact}} }} = \frac{{S_{\text{blocked}} /S_{\text{total}} }}{{1 - S_{\text{blocked}} /S_{\text{total}} }} $$
(A10)

Solving for κ and substituting Eq. [A4] for S blocked/S total results in an expression requiring only the grain and particle radii.

$$ \kappa = \frac{{f_{\text{p}} }}{{S_{\text{blocked}} /S_{\text{total}} }} - f_{\text{p}} = 4\left( {\frac{{\bar{r}_{\text{p}} }}{{\bar{R}}}} \right) - f_{\text{p}} $$
(A11)

In the case of a low reinforcement volume fraction material in which the size of the reinforcement particle does not greatly differ from the initial size of the matrix grain Eq. [A11] simplifies to Eq. [A12], where κ will have an approximately linear dependence on the relative size of reinforcement and grain.

$$ \kappa \cong 4\left( {\frac{{\bar{r}_{\text{p}} }}{{\bar{R}}}} \right) $$
(A12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, J.B., Lopez, H.F., Rohatgi, P.K. et al. Impact of Volume Fraction and Size of Reinforcement Particles on the Grain Size in Metal–Matrix Micro and Nanocomposites. Metall Mater Trans A 45, 4055–4061 (2014). https://doi.org/10.1007/s11661-014-2358-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2358-2

Keywords

Navigation