Skip to main content
Log in

Synthesis of γ-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend, Part I: Influence of Processing and Microstructural Evolution

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

To provide insight into the influence of an electric field on the kinetics of diffusion, fully lamellar γ-TiAl was processed by a rapid, two-stage, solid-state reactive sintering via spark plasma sintering (SPS) of a cryomilled Ti, Al powder blend. Cryomilling was implemented in the current study to attain a nanostructured grain size in the Ti and Al powder blend, and thereby provide insight into the influence of grain size on the underlying diffusion kinetics. Following a two-step process involving SPS at 873 K (600 °C) for 15 minutes and 1523 K (1250 °C) for 30 minutes, a fully lamellar TiAl alloy, with submicron lamellar spacing, was successfully obtained. Microstructural refinement in the Ti and Al powders during cryomilling led to an increase in solid-state diffusion, and the underlying mechanisms are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z.A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763-77.

    Article  Google Scholar 

  2. J. Zhao, J.E. Garay, U. Anselmi-Tamburini, and Z.A. Munir: J. Appl. Phys., 2007, vol. 102, 114902.

    Article  Google Scholar 

  3. J.E. Garay, U. Anselmi-Tamburini and Z.A. Munir: Acta Mater., 2003, vol. 51, pp. 4487-95.

    Article  Google Scholar 

  4. N. Bertolino, J. Garay, U. Anselmi-Tamburini and Z.A. Munir: Philos. Mag. B, 2002, vol. 82, pp. 969-85.

    Article  Google Scholar 

  5. J.R. Friedman, J.E. Garay, U. Anselmi-Tamburini and Z.A. Munir: Intermetallics, 2004, vol. 12, pp. 589-97.

    Article  Google Scholar 

  6. T. Kondo, M. Yasuhara, T. Kuramoto, Y. Kodera, M. Ohyanagi and Z.A. Munir: J. Mater. Sci., 2008, vol. 43, pp. 6400-05.

    Article  Google Scholar 

  7. U. Anselmi-Tamburini, J.E. Garay and Z.A. Munir: Mater. Mater. Sci. Eng. A, 2005, vol. 407, pp. 24-30.

    Article  Google Scholar 

  8. T. Kondo, T. Kuramoto, Y. Kodera, M. Ohyanagi and Z.A. Munir: J. Ceram. Soc. Jpn., 2008, vol. 116, pp. 1187-92.

    Article  Google Scholar 

  9. H. Clemens and H. Kestler: Adv Eng Mater, 2000, vol. 2, pp. 551-70.

    Article  Google Scholar 

  10. K. Gebauer: Intermetallics, 2006, vol. 14, pp. 355-60.

    Article  Google Scholar 

  11. K. Liu, Y.C. Ma, M. Gao, G.B. Rao, Y. Y. Li, K. Wei, X.H. Wu and M.H. Loretto: Intermetallics, 2005, vol. 13, pp. 925-28.

    Article  Google Scholar 

  12. T. Tetsui: Mater. Mater. Sci. Eng. A, 2002, vol. 329, pp. 582-88.

    Article  Google Scholar 

  13. G.P. Chaudhari and V.L. Acoff: Intermetallics 2010, vol. 18, pp. 472-78.

    Article  Google Scholar 

  14. Y.Y. Chen, H.B. Yu, D.L. Zhang and L.H. Chai: Mater. Mater. Sci. Eng. A, 2009, vol. 525, pp. 166-73.

    Article  Google Scholar 

  15. M.A. Lagos and I. Agote: Intermetallics, 2013, vol. 36, pp. 51-56.

    Article  Google Scholar 

  16. O. Ertorer, T. Topping, Y. Li, W. Moss and E.J. Lavernia: Scripta Mater., 2009, vol. 60, pp. 586-89.

    Article  Google Scholar 

  17. D.B. Witkin and E.J. Lavernia: Prog Mater Sci, 2006, vol. 51, pp. 1-60.

    Article  Google Scholar 

  18. N. Bertolino, M. Monagheddu, A. Tacca, P. Giuliani, C. Zanotti and U.A. Tamburini: Intermetallics, 2003, vol. 11, pp. 41-49.

    Article  Google Scholar 

  19. G.K. Williamson and W.H. Hall: Acta Metall., 1953, vol. 1, pp. 22-31.

    Article  Google Scholar 

  20. L. Balogh, T. Ungar, Y. Zhao, Y.T. Zhu, Z. Horita, C. Xu and T.G. Langdon: Acta Mater., 2008, vol. 56, pp. 809-20.

    Article  Google Scholar 

  21. J. Schuster and M. Palm: J. Phase Equilib. Diffus., 2006, vol. 27, pp. 255-77.

    Article  Google Scholar 

  22. L. Xu, Y.Y. Cui, Y.L. Hao and R. Yang: Mater. Mater. Sci. Eng. A, 2006, vol. 435, pp. 638-47.

    Article  Google Scholar 

  23. W. Yao, A. P. Wu, G.S. Zou and H.L. Ren: Mater. Mater. Sci. Eng. A, 2008, vol. 480, pp. 456-63.

    Article  Google Scholar 

  24. K. Kulkarni, Y. Sun, A.K. Sachdev and E.J. Lavernia: Scripta Mater., 2013, vol. 68, pp. 841-44.

    Article  Google Scholar 

  25. H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman and E.J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2769-82.

    Article  Google Scholar 

  26. E.J. Lavernia, B.Q. Han and J.M. Schoenung: Mater. Mater. Sci. Eng. A, 2008, vol. 493, pp. 207-14.

    Article  Google Scholar 

  27. J. Benjamin and T. Volin: Metall. Trans. B, 1974, vol. 5B, pp. 1929-34.

    Article  Google Scholar 

  28. F.S. Sun, P. Rojas, A. Zuniga and E.J. Lavernia: Mater. Mater. Sci. Eng. A, 2006, vol. 430, pp. 90-97.

    Article  Google Scholar 

  29. C. Suryanarayana: Prog Mater Sci, 2001, vol. 46, pp. 1-184.

    Article  Google Scholar 

  30. F. Zhou, D. Witkin, S.R. Nutt and E.J. Lavernia: Mater. Mater. Sci. Eng. A, 2004, vol. 375, pp. 917-21.

    Article  Google Scholar 

  31. O. Ertorer, A. Zuniga, T. Topping, W. Moss and E.J. Lavernia: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 91-103.

    Article  Google Scholar 

  32. C.C. Koch: Nanostruct Mater, 1993, vol. 2, pp. 109-29.

    Article  Google Scholar 

  33. Y.J. Lin, B. Yao, Z.H. Zhang, Y. Li, Y. Sohn, J.M. Schoenung and E.J. Lavernia: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 4247-57.

    Article  Google Scholar 

  34. D.R. Lide: Handbook of Chemistry and Physics, 84th ed., CRC Press, Boca Raton, 2003.

  35. G. Welsch, R. Boyer, and E.W. Collings: Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, 1994.

  36. C.C. Koch: Nanostruct. Mater., 1997, vol. 9, pp. 13-22.

    Article  Google Scholar 

  37. T. Voisin, L. Durand, N. Karnatak, S. Le Gallet, M. Thomas, Y. Le Berre, J.F. Castagne and A. Couret: J. Mater. Process. Technol., 2013, vol. 213, pp. 269-78.

    Article  Google Scholar 

  38. Y. Sun, K. Kulkarni, A.K. Sachdev, and E.J. Lavernia: Metall. Mater. Trans. A, DOI:10.1007/s11661-014-2216-2.

  39. J. Safarian and T.A. Engh: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 747-53.

    Article  Google Scholar 

  40. J.G. Luo and V.L. Acoff: Mater. Mater. Sci. Eng. A, 2004, vol. 379, pp. 164-72.

    Article  Google Scholar 

  41. R. Orru, G. Cao and Z.A. Munir: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1101-08.

    Article  Google Scholar 

  42. Y. Mishin and C. Herzig: Mater. Mater. Sci. Eng. A, 1999, vol. 260, pp. 55-71.

    Article  Google Scholar 

  43. L. C. Luther: J. Chem. Phys., 1965, vol. 43, pp. 2213-18.

    Article  Google Scholar 

  44. E.W. Elcock and C.W. McCombie: Phys. Rev., 1958, vol. 109, pp. 605-06.

    Article  Google Scholar 

Download references

Acknowledgments

The experimental support and advice provided by Ertorer Osman, Haiming Wen, Yizhang Zhou, and Baolong Zheng is greatly appreciated. The authors would like to thank the management of General Motors for supporting this research. EJL would also like to thank the support from National Science Foundation with a grant number NSF DMR-1210437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Sun.

Additional information

Manuscript submitted July 6, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Kulkarni, K., Sachdev, A.K. et al. Synthesis of γ-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend, Part I: Influence of Processing and Microstructural Evolution. Metall Mater Trans A 45, 2750–2758 (2014). https://doi.org/10.1007/s11661-014-2215-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2215-3

Keywords

Navigation